Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App

Related Articles

Matplotlib.pyplot.yticks() in Python

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.

Matplotlib.pyplot.yticks() Function

The annotate() function in pyplot module of matplotlib library is used to get and set the current tick locations and labels of the y-axis.

Syntax: matplotlib.pyplot.yticks(ticks=None, labels=None, **kwargs)

Parameters: This method accept the following parameters that are described below:

  • ticks: This parameter is the list of xtick locations. and an optional parameter. If an empty list is passed as an argument then it will removes all xticks
  • labels: This parameter contains labels to place at the given ticks locations. And it is an optional parameter.
  • **kwargs: This parameter is Text properties that is used to control the appearance of the labels.

Returns: This returns the following:

  • locs :This returns the list of ytick locations.
  • labels :This returns the list of ylabel Text objects.

The resultant is (locs, labels)

Below examples illustrate the matplotlib.pyplot.yticks() function in matplotlib.pyplot:

Example #1:

# Implementation of matplotlib.pyplot.yticks()
# function
import numpy as np
import matplotlib.pyplot as plt
# values of x and y axes 
valx = [30, 35, 50, 5, 10, 40, 45, 15, 20, 25
valy = [1, 4, 3, 2, 7, 6, 9, 8, 10, 5
plt.plot(valx, valy) 
plt.xticks(np.arange(0, 60, 5)) 
plt.yticks(np.arange(0, 15, 1)) 


Example #2:

#Implementation of matplotlib.pyplot.yticks() 
# function
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
def get_demo_image():
    from matplotlib.cbook import get_sample_data
    import numpy as np
    f = get_sample_data("axes_grid/bivariate_normal.npy",
    z = np.load(f)
    # z is a numpy array of 15x15
    return z, (3, 19, 4, 13)
fig, ax = plt.subplots(figsize=[5, 4])
Z, extent = get_demo_image()
       xlim=(0, 65),
       ylim=(0, 50))
axins = zoomed_inset_axes(ax, zoom=2, loc='upper right')
im = axins.imshow(Z, extent=extent, interpolation="nearest",


My Personal Notes arrow_drop_up
Last Updated : 12 Apr, 2020
Like Article
Save Article
Similar Reads
Related Tutorials