Skip to content
Related Articles

Related Articles

Improve Article

Matplotlib.pyplot.errorbar() in Python

  • Last Updated : 21 Apr, 2020
Geek Week

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.

matplotlib.pyplot.errorbar() Function:

The errorbar() function in pyplot module of matplotlib library is used to plot y versus x as lines and/or markers with attached errorbars.

Syntax: matplotlib.pyplot.errorbar(x, y, yerr=None, xerr=None, fmt=”, ecolor=None, elinewidth=None, capsize=None, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None, \*, data=None, \*\*kwargs)

Parameters: This method accept the following parameters that are described below:

  • x, y: These parameter are the horizontal and vertical coordinates of the data points.
  • fmt: This parameter is an optional parameter and it contains the string value.
  • xerr, yerr: These parameter contains an array.And the error array should have positive values.
  • ecolor: This parameter is an optional parameter. And it is the color of the errorbar lines with default value NONE.
  • elinewidth: This parameter is also an optional parameter. And it is the linewidth of the errorbar lines with default value NONE.
  • capsize: This parameter is also an optional parameter. And it is the length of the error bar caps in points with default value NONE.
  • barsabove: This parameter is also an optional parameter. It contains boolean value True for plotting errorsbars above the plot symbols.Its default value is False.
  • lolims, uplims, xlolims, xuplims: These parameter are also an optional parameter. They contain boolean values which is used to indicate that a value gives only upper/lower limits.
  • errorevery: This parameter is also an optional parameter. They contain integer values which is used to draws error bars on a subset of the data.

Returns: This returns the container and it is comprises of the following:



  • plotline:This returns the Line2D instance of x, y plot markers and/or line.
  • caplines:This returns the tuple of Line2D instances of the error bar caps.
  • barlinecols:This returns the tuple of LineCollection with the horizontal and vertical error ranges.

Below examples illustrate the matplotlib.pyplot.errorbar() function in matplotlib.pyplot:

Example #1:




# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
  
# example data
xval = np.arange(0.1, 4, 0.5)
yval = np.exp(-xval)
  
plt.errorbar(xval, yval, xerr = 0.4, yerr = 0.5)
  
plt.title('matplotlib.pyplot.errorbar() function Example')
plt.show()

Output:

Example #2:




# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
   
fig = plt.figure()
x = np.arange(10)
y = 3 * np.sin(x / 20 * np.pi)
yerr = np.linspace(0.05, 0.2, 10)
   
plt.errorbar(x, y + 7, yerr = yerr,
             label ='Line1')
plt.errorbar(x, y + 5, yerr = yerr,
             uplims = True
             label ='Line2')
plt.errorbar(x, y + 3, yerr = yerr, 
             uplims = True
             lolims = True,
             label ='Line3')
  
upperlimits = [True, False] * 5
lowerlimits = [False, True] * 5
plt.errorbar(x, y, yerr = yerr,
             uplims = upperlimits, 
             lolims = lowerlimits,
             label ='Line4')
   
plt.legend(loc ='upper left')
  
plt.title('matplotlib.pyplot.errorbar()\
function Example')
plt.show()

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :