Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

matplotlib.pyplot.arrow() in Python

  • Last Updated : 20 Jul, 2021

Matplotlib is a very powerful plotting library useful for those working with Python and NumPy. And for making statistical interference, it becomes very necessary to visualize our data and Matplotlib is the tool that can be very helpful for this purpose. It provides MATLAB like interface only difference is that it uses Python and is open source.

matplotlib.pyplot.arrow()

This function adds the arrow to the graph based on the coordinates passed to it. 

Syntax: matplotlib.pyplot.arrow(x, y, dx, dy, **kwargs)
Parameters: 
x, y: The x and y coordinates of the arrow base. 
dx, dy: The length of the arrow along x and y direction. 
**kwargs: Optional arguments that helps in adding properties to arrow, like 
adding color to arrow, changing width of arrow 
 

Example #1  

Python3




import matplotlib.pyplot as plt
 
 
# Initializing values
# of x and y
x =[1, 2, 3, 4, 5]
y =[2, 4, 6, 8, 10]
 
# Plotting the graph
plt.plot(x, y)
 
# Adding an arrow to graph starting
# from the base (2, 4) and with the
# length of 2 units from both x and y
# And setting the width of arrow for
# better visualization
plt.arrow(2, 4, 2, 2, width = 0.05)
 
# Showing the graph
plt.show()

Output: 

matplotlib.pyplot.arrow()

Example 2#  

Python3




import matplotlib.pyplot as plt
 
 
x =[1, 2, 3, 4, 5]
y =[2, 4, 6, 8, 10]
 
plt.plot(x, y)
 
# Increasing head_width of
# the arrow by setting
# head_width parameter
plt.arrow(2, 4, 2, 2,
          head_width = 0.2,
          width = 0.05)
 
plt.show()

Output: 

matplotlib.pyplot.arrow()

Example #3  

Python3




import matplotlib.pyplot as plt
 
 
x =[1, 2, 3, 4, 5]
y =[2, 4, 6, 8, 10]
plt.plot(x, y)
 
# changing the edge color
# to green
plt.arrow(2, 4, 2, 2,
          head_width = 0.2,
          width = 0.05,
          ec ='green')
 
plt.show()

Output: 

matplotlib.pyplot.arrow()

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!