Skip to content
Related Articles

Related Articles

Matplotlib.figure.Figure.legend() in Python
  • Last Updated : 03 May, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The figure module provides the top-level Artist, the Figure, which contains all the plot elements. This module is used to control the default spacing of the subplots and top level container for all plot elements.

matplotlib.figure.Figure.legend() method

The legend() method figure module of matplotlib library is used to place a legend on the figure.

Syntax: legend(self, *args, **kwargs)

Parameters: This method accept the following parameters that are discussed below:

  • handles :This parameter is the list of Artists (lines, patches) to be added to the legend.
  • labels :This parameter is the list of labels to show next to the artists.

Returns: This method returns the matplotlib.legend.Legend instance.

Below examples illustrate the matplotlib.figure.Figure.legend() function in matplotlib.figure:

Example 1:

# Implementation of matplotlib function 
import matplotlib.pyplot as plt 
fig, ax = plt.subplots() 
line1, = ax.plot([1, 2, 3], 
                 label ="Line 1"
                 color ="black",  
                 linewidth = 4
                 linestyle =':'
line2, = ax.plot([3, 2, 1],  
                 label ="Line 2"
                 color ="green",  
                 linewidth = 4
first_legend = ax.legend(handles =[line1],  
                         loc ='upper center'
fig.legend(handles =[line2], loc ='lower center')
function Example\n\n""", fontweight ="bold") 


Example 2:

# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
for color in [ 'tab:green', 'tab:blue', 'tab:orange']:
    n = 70
    x, y = np.random.rand(2, n)
    scale = 1000.0 * np.random.rand(n)
    ax.scatter(x, y, c = color, s = scale, label = color,
               alpha = 0.35)
function Example\n\n""", fontweight ="bold") 


 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :