# Matplotlib.figure.Figure.dpi() in Python

• Last Updated : 30 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The figure module provides the top-level Artist, the Figure, which contains all the plot elements. This module is used to control the default spacing of the subplots and top level container for all plot elements.

## matplotlib.figure.Figure.dpi method

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

The dpi method of figure module of matplotlib library is the resolution in dots per inch.

Syntax: fig.dpi

Parameters: This method does not accept any parameters.

Returns: This method returns resolution in dots per inch.

Below examples illustrate the matplotlib.figure.Figure.dpi function in matplotlib.figure:

Example 1:

 # Implementation of matplotlib function import matplotlib.pyplot as pltimport numpy as np     fig = plt.figure()  nx = int(fig.get_figwidth() * fig.dpi)ny = int(fig.get_figheight() * fig.dpi)  data = np.random.random((ny, nx))plt.plot(data)   fig.suptitle('matplotlib.figure.Figure.dpi \function Example', fontweight ="bold")   plt.show()

Output:

Example 2:

 # Implementation of matplotlib function  import matplotlib.pyplot as pltfrom matplotlib import collections, colors, transformsimport numpy as np   nverts = 50npts = 100   r = np.arange(nverts)theta = np.linspace(0, 2 * np.pi, nverts)  xx = r * np.sin(theta)yy = r * np.cos(theta)  spiral = np.column_stack([xx, yy])   rs = np.random.RandomState(19680801)   xyo = rs.randn(npts, 2)   colors = [colors.to_rgba(c)          for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]   fig, ax1 = plt.subplots()   col = collections.RegularPolyCollection(    7, sizes = np.abs(xx) * 10.0, offsets = xyo,     transOffset = ax1.transData)  trans = transforms.Affine2D().scale(fig.dpi / 72.0)  col.set_transform(trans) ax1.add_collection(col, autolim = True)col.set_color(colors)  fig.suptitle('matplotlib.figure.Figure.dpi() function\ Example', fontweight ="bold")   plt.show()

Output:

My Personal Notes arrow_drop_up