Matplotlib is a library in Python and it is a numerical – mathematical extension for NumPy library. The figure module provides the top-level Artist, the Figure, which contains all the plot elements. This module is used to control the default spacing of the subplots and top-level containers for all plot elements.

The add_axes() method figure module of matplotlib library is used to add an axes to the figure.

Syntax: add_axes(self, *args, **kwargs) Parameters: This accept the following parameters that are described below:

• rect : This parameter is the dimensions [left, bottom, width, height] of the new axes.
• projection : This parameter is the projection type of the Axes.
• sharex, sharey : These parameters share the x or y axis with sharex and/or sharey.
• label : This parameter is the label for the returned axes.

Returns: This method return the axes class depends on the projection used.

Note : To understand multiple axes( multiple rectangle insertion in generated figure) easily, Think of  a rectangle which is 1 * 1 (with 0.1 as increment ).Within the rectangle we have arrange those axes with specifying ([a,b,c,d])

(a,b) is the point in southwest corner of the rectangle which we create. c represents width and d represents height of the respective rectangle.

Try this basic example on your own  to understand their placement within a rectangle.

import matplotlib.pyplot as plt
import numpy as np
figu = plt.figure()
r = figu.patch
r.set_facecolor(‘lightslategray’)

axes = figu.add_axes([0, 0.4, 0.1, 1])
axes = figu.add_axes([1, 1, 0.2, 0.3])
plt.show()

Below examples illustrate the matplotlib.figure.Figure.add_axes() function in matplotlib.figure: Example 1:

Python3

 # Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt     fig = plt.figure() fig.subplots_adjust(top=0.8) ax1 = fig.add_subplot(211)   t = np.arange(0.0, 1.0, 0.01) s = np.sin(2 * np.pi * t) line, = ax1.plot(t, s, color='green', lw=2)   np.random.seed(19680801)   ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3]) n, bins, patches = ax2.hist(np.random.randn(1000), 50,                             facecolor='yellow',                             edgecolor='yellow')   fig.suptitle('matplotlib.figure.Figure.add_axes() \ function Example\n\n', fontweight=& quot              bold & quot              )   plt.show()

Output: Example-2:

Python3

 # Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt   fig = plt.figure() rect = fig.patch rect.set_facecolor('lightslategray')   ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4]) rect = ax1.patch rect.set_facecolor('lightgoldenrodyellow')     for label in ax1.xaxis.get_ticklabels():     label.set_color('green')     label.set_rotation(25)     label.set_fontsize(16)   for line in ax1.yaxis.get_ticklines():     line.set_color('yellow')     line.set_markersize(5)     line.set_markeredgewidth(3)   fig.suptitle('matplotlib.figure.Figure.add_axes() \ function Example\n\n', fontweight ="bold")   plt.show()

Output:

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Previous
Next