Open In App
Related Articles

Matplotlib.axis.Axis.set_contains() function in Python

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.

Matplotlib.axis.Axis.set_contains() Function

The Axis.set_contains() function in axis module of matplotlib library is used to define a custom contains test for the artist. 
 

Syntax: Axis.set_contains(self, picker) 
 

Parameters: This method accepts the following parameters. 

  • picker: This parameter is the custom picker function to evaluate if an event is within the artist.


Return value: This method does not return any value. 

Below examples illustrate the matplotlib.axis.Axis.set_contains() function in matplotlib.axis:
Example 1:

Python3

# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt  
from matplotlib.lines import Line2D  
from matplotlib.patches import Rectangle  
from matplotlib.text import Text  
from matplotlib.image import AxesImage  
import numpy as np  
from numpy.random import rand  
      
      
fig, (ax1, ax2) = plt.subplots(2, 1)  
ax1.set_ylabel('ylabel', picker = True,  
               bbox = dict(facecolor ='red'))  
      
line, = ax1.plot(rand(100), 'go-')  
      
ax2.bar(range(10), rand(10), picker = True)  
      
for label in ax2.get_xticklabels():   
    label.set_picker(True)  
      
def onpick1(event):  
          
    if isinstance(event.artist, Line2D):  
        thisline = event.artist  
        xdata = thisline.get_xdata()  
        ydata = thisline.get_ydata()  
        ind = event.ind  
        print('onpick1 line:', np.column_stack([xdata[ind],  
                                                ydata[ind]]))  
              
    elif isinstance(event.artist, Rectangle):  
        patch = event.artist  
        print('onpick1 patch:', patch.get_path())  
              
    elif isinstance(event.artist, Text):  
        text = event.artist  
        print('onpick1 text:', text.get_text())  
     
Axis.set_contains(ax2, picker = onpick1) 
fig.canvas.mpl_connect('pick_event', onpick1)
  
fig.suptitle('matplotlib.axis.Axis.set_contains() \
function Example\n', fontweight ="bold")  
    
plt.show() 

                    

Output: 


Onclick on Figure: 

onpick1 text: ylabel
onpick1 patch: Path(array([[0., 0.],
       [1., 0.],
       [1., 1.],
       [0., 1.],
       [0., 0.]]), array([ 1,  2,  2,  2, 79], dtype=uint8))
onpick1 patch: Path(array([[0., 0.],
       [1., 0.],
       [1., 1.],
       [0., 1.],
       [0., 0.]]), array([ 1,  2,  2,  2, 79], dtype=uint8))


Example 2:

Python3

# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt  
from matplotlib.lines import Line2D  
from matplotlib.patches import Rectangle  
from matplotlib.text import Text  
from matplotlib.image import AxesImage  
import numpy as np  
from numpy.random import rand  
      
      
def line_picker(line, mouseevent):  
          
    if mouseevent.xdata is None:  
        return False, dict()  
          
    xdata = line.get_xdata()  
    ydata = line.get_ydata()  
    maxd = 0.05
    d = np.sqrt(  
        (xdata - mouseevent.xdata)**2 + (ydata - mouseevent.ydata)**2)  
      
    ind, = np.nonzero(d <= maxd)  
          
    if len(ind):  
              
        pickx = xdata[ind]  
        picky = ydata[ind]  
        props = dict(ind = ind, pickx = pickx, picky = picky)  
        return True, props  
          
    else:  
        return False, dict()  
      
def onpick2(event):  
          
    print('Result :', event.pickx, event.picky)  
      
fig, ax = plt.subplots()  
ax.plot(rand(100), rand(100), 'o')  
    
Axis.set_contains(ax, picker = line_picker) 
    
fig.canvas.mpl_connect('pick_event', onpick2) 
  
fig.suptitle('matplotlib.axis.Axis.set_contains() \
function Example\n', fontweight ="bold")  
    
plt.show() 

                    

Output: 
 


 



Last Updated : 10 Jun, 2020
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads