Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maekawa’s Algorithm for Mutual Exclusion in Distributed System

  • Difficulty Level : Medium
  • Last Updated : 14 Aug, 2019

Prerequisite – Mutual exclusion in distributed systems
Maekawa’s Algorithm is quorum based approach to ensure mutual exclusion in distributed systems. As we know, In permission based algorithms like Lamport’s Algorithm, Ricart-Agrawala Algorithm etc. a site request permission from every other site but in quorum based approach, A site does not request permission from every other site but from a subset of sites which is called quorum.

In this algorithm:

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.


  • Three type of messages ( REQUEST, REPLY and RELEASE) are used.
  • A site send a REQUEST message to all other site in its request set or quorum to get their permission to enter critical section.
  • A site send a REPLY message to requesting site to give its permission to enter the critical section.
  • A site send a RELEASE message to all other site in its request set or quorum upon exiting the critical section.

The construction of request set or Quorum:
A request set or Quorum in Maekawa’s algorithm must satisfy the following properties:

  1. ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N :: Ri ⋂ Rj ≠ ∅ 

    i.e there is at least one common site between the request sets of any two sites.

  2. ∀i : 1 ≤ i ≤ N :: Si ∊ Ri 
  3. ∀i : 1 ≤ i ≤ N :: |Ri| = K 
  4. Any site Si is contained in exactly K sets.
  5. N = K(K - 1) +1 and |Ri| = √N 


  • To enter Critical section:
    • When a site Si wants to enter the critical section, it sends a request message REQUEST(i) to all other sites in the request set Ri.
    • When a site Sj receives the request message REQUEST(i) from site Si, it returns a REPLY message to site Si if it has not sent a REPLY message to the site from the time it received the last RELEASE message. Otherwise, it queues up the request.


  • To execute the critical section:
    • A site Si can enter the critical section if it has received the REPLY message from all the site in request set Ri
  • To release the critical section:
    • When a site Si exits the critical section, it sends RELEASE(i) message to all other sites in request set Ri
    • When a site Sj receives the RELEASE(i) message from site Si, it send REPLY message to the next site waiting in the queue and deletes that entry from the queue
    • In case queue is empty, site Sj update its status to show that it has not sent any REPLY message since the receipt of the last RELEASE message

Message Complexity:
Maekawa’s Algorithm requires invocation of 3√N messages per critical section execution as the size of a request set is √N. These 3√N messages involves.

  • √N request messages
  • √N reply messages
  • √N release messages

Drawbacks of Maekawa’s Algorithm:

  • This algorithm is deadlock prone because a site is exclusively locked by other sites and requests are not prioritized by their timestamp.


  • Synchronization delay is equal to twice the message propagation delay time
  • It requires 3√n messages per critical section execution.
My Personal Notes arrow_drop_up
Recommended Articles
Page :