Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Longest subarray of non-empty cells after removal of at most a single empty cell

  • Difficulty Level : Medium
  • Last Updated : 07 Apr, 2021

Given a binary array arr[], the task is to find the longest subarray of non-empty cells after the removal of at most 1 empty cell.
 

The array indices filled with 0 are known as empty cell whereas the indices filled with 1 are known as non-empty cells.

Examples: 
 

Input: arr[] = {1, 1, 0, 1} 
Output:
Explanation: 
Removal of 0 modifies the array to {1, 1, 1}, thus maximizing the length of the subarray to 3.
Input: arr[] = {1, 1, 1, 1, 1} 
Output:
 



 

Approach: 
The idea is to store the frequencies of 1 in the prefixes and suffixes of every index to calculate longest consecutive sequences of 1’s on both the directions from a particular index. Follow the steps below to solve the problem: 
 

  • Initialize two arrays l[] and r[] which stores the length of longest consecutive 1s in the array arr[] from left and right side of the array respectively.
  • Iterate over the input array over indices (0, N) and increase count by 1 for every arr[i] = 1. Otherwise, store the value of count till the (i – 1)th index in l[i] reset count to zero. 
     
  • Similarly, repeat the above steps by traversing over indices [N – 1, 0] store the count from right in r[].
  • For every ith index index which contains 0, calculate the length of non-empty subarray possible by removal of that 0, which is equal to l[i] + r[i].
  • Compute the maximum of all such lengths and print the result.

Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum length
// of a subarray of 1s after removing
// at most one 0
int longestSubarray(int a[], int n)
{
    // Stores the count of consecutive
    // 1's from left
    int l[n];
 
    // Stores the count of consecutive
    // 1's from right
    int r[n];
 
    // Traverse left to right
    for (int i = 0, count = 0;
        i < n; i++) {
 
        // If cell is non-empty
        if (a[i] == 1)
 
            // Increase count
            count++;
 
        // If cell is empty
        else {
 
            // Store the count of
            // consecutive 1's
            // till (i - 1)-th index
            l[i] = count;
            count = 0;
        }
    }
 
    // Traverse from right to left
    for (int i = n - 1, count = 0;
        i >= 0; i--) {
 
        if (a[i] == 1)
            count++;
 
        else {
 
            // Store the count of
            // consecutive 1s
            // till (i + 1)-th index
            r[i] = count;
            count = 0;
        }
    }
 
    // Stores the length of
    // longest subarray
    int ans = -1;
    for (int i = 0; i < n; ++i) {
 
        if (a[i] == 0)
 
            // Store the maximum
            ans = max(ans, l[i] + r[i]);
    }
 
    // If array a contains only 1s
    // return n else return ans
    return ans < 0 ? n : ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 0, 1, 1, 1, 0, 1,
                0, 1, 1 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << longestSubarray(arr, n);
 
    return 0;
}

Java




// Java program for the above approach
class GFG{
     
// Function to find the maximum length
// of a subarray of 1s after removing
// at most one 0
public static int longestSubarray(int[] a,
                                int n)
{
     
    // Stores the count of consecutive
    // 1's from left
    int[] l = new int[n];
     
    // Stores the count of consecutive
    // 1's from right
    int[] r = new int[n];
     
    // Traverse left to right
    for(int i = 0, count = 0;
            i < n; i++)
    {
         
    // If cell is non-empty
    if (a[i] == 1)
         
        // Increase count
        count++;
         
    // If cell is empty
    else
    {
             
        // Store the count of
        // consecutive 1's
        // till (i - 1)-th index
        l[i] = count;
        count = 0;
    }
    }
     
    // Traverse from right to left
    for(int i = n - 1, count = 0;
            i >= 0; i--)
    {
    if (a[i] == 1)
        count++;
         
    else
    {
             
        // Store the count of
        // consecutive 1s
        // till (i + 1)-th index
        r[i] = count;
        count = 0;
        }
    }
     
    // Stores the length of
    // longest subarray
    int ans = -1;
    for(int i = 0; i < n; ++i)
    {
    if (a[i] == 0)
             
        // Store the maximum
        ans = Math.max(ans, l[i] + r[i]);
    }
     
    // If array a contains only 1s
    // return n else return ans
    return ans < 0 ? n : ans;
}
 
// Driver code
public static void main(String[] args)
{
    int[] arr = { 0, 1, 1, 1, 0,
                1, 0, 1, 1 };
    int n = arr.length;
     
    System.out.println(longestSubarray(arr, n));
}
}
 
// This code is contributed by divyeshrabadiya07

Python3




# Python3 program for the above approach
 
# Function to find the maximum length
# of a subarray of 1s after removing
# at most one 0
def longestSubarray(a, n):
 
    # Stores the count of consecutive
    # 1's from left
    l = [0] * (n)
 
    # Stores the count of consecutive
    # 1's from right
    r = [0] * (n)
     
    count = 0
     
    # Traverse left to right
    for i in range(n):
         
        # If cell is non-empty
        if (a[i] == 1):
             
            # Increase count
            count += 1
         
        # If cell is empty
        else:
             
            # Store the count of
            # consecutive 1's
            # till (i - 1)-th index
            l[i] = count
            count = 0
     
    count = 0
    # Traverse from right to left
    for i in range(n - 1, -1, -1):
        if (a[i] == 1):
            count += 1
             
        else:
             
            # Store the count of
            # consecutive 1s
            # till (i + 1)-th index
            r[i] = count
            count = 0
     
    # Stores the length of
    # longest subarray
    ans = -1
    for i in range(n):
        if (a[i] == 0):
             
            # Store the maximum
            ans = max(ans, l[i] + r[i])
     
    # If array a contains only 1s
    # return n else return ans
    return ans < 0 and n or ans
 
# Driver code
arr = [ 0, 1, 1, 1, 0, 1, 0, 1, 1 ]
 
n = len(arr)
 
print(longestSubarray(arr, n))
 
# This code is contributed by sanjoy_62

C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to find the maximum length
// of a subarray of 1s after removing
// at most one 0
public static int longestSubarray(int[] a,
                                  int n)
{
     
    // Stores the count of consecutive
    // 1's from left
    int[] l = new int[n];
     
    // Stores the count of consecutive
    // 1's from right
    int[] r = new int[n];
     
    // Traverse left to right
    for(int i = 0, count = 0; i < n; i++)
    {
         
        // If cell is non-empty
        if (a[i] == 1)
             
            // Increase count
            count++;
             
        // If cell is empty
        else
        {
             
            // Store the count of
            // consecutive 1's
            // till (i - 1)-th index
            l[i] = count;
            count = 0;
        }
    }
     
    // Traverse from right to left
    for(int i = n - 1, count = 0;
            i >= 0; i--)
    {
    if (a[i] == 1)
        count++;
         
    else
    {
             
        // Store the count of
        // consecutive 1s
        // till (i + 1)-th index
        r[i] = count;
        count = 0;
        }
    }
     
    // Stores the length of
    // longest subarray
    int ans = -1;
    for(int i = 0; i < n; ++i)
    {
        if (a[i] == 0)
                 
            // Store the maximum
            ans = Math.Max(ans, l[i] + r[i]);
    }
     
    // If array a contains only 1s
    // return n else return ans
    return ans < 0 ? n : ans;
}
 
 
// Driver code
public static void Main()
{
    int[] arr = { 0, 1, 1, 1, 0,
                  1, 0, 1, 1 };
    int n = arr.Length;
 
    Console.Write(longestSubarray(arr, n));
}
}
 
// This code is contributed by sanjoy_62

Javascript




<script>
// javascript program for the above approach    
// Function to find the maximum length
    // of a subarray of 1s after removing
    // at most one 0
    function longestSubarray(a , n)
    {
 
        // Stores the count of consecutive
        // 1's from left
        var l = Array(n).fill(0);
 
        // Stores the count of consecutive
        // 1's from right
        var r = Array(n).fill(0);
 
        // Traverse left to right
        for (i = 0, count = 0; i < n; i++)
        {
 
            // If cell is non-empty
            if (a[i] == 1)
 
                // Increase count
                count++;
 
            // If cell is empty
            else {
 
                // Store the count of
                // consecutive 1's
                // till (i - 1)-th index
                l[i] = count;
                count = 0;
            }
        }
 
        // Traverse from right to left
        for (i = n - 1, count = 0; i >= 0; i--) {
            if (a[i] == 1)
                count++;
 
            else {
 
                // Store the count of
                // consecutive 1s
                // till (i + 1)-th index
                r[i] = count;
                count = 0;
            }
        }
 
        // Stores the length of
        // longest subarray
        var ans = -1;
        for (i = 0; i < n; ++i) {
            if (a[i] == 0)
 
                // Store the maximum
                ans = Math.max(ans, l[i] + r[i]);
        }
 
        // If array a contains only 1s
        // return n else return ans
        return ans < 0 ? n : ans;
    }
 
    // Driver code
        var arr = [ 0, 1, 1, 1, 0, 1, 0, 1, 1 ];
        var n = arr.length;
        document.write(longestSubarray(arr, n));
 
// This code is contributed by Rajput-Ji
</script>
Output: 
4

 

Time Complexity: O(N) 
Auxiliary Space: O(N)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :