Skip to content
Related Articles

Related Articles

Longest Consecutive Subsequence
  • Difficulty Level : Medium
  • Last Updated : 17 Feb, 2021

Given an array of integers, find the length of the longest sub-sequence such that elements in the subsequence are consecutive integers, the consecutive numbers can be in any order. 

Examples:  

Input: arr[] = {1, 9, 3, 10, 4, 20, 2}
Output: 4
Explanation: 
The subsequence 1, 3, 4, 2 is the longest 
subsequence of consecutive elements

Input: arr[] = {36, 41, 56, 35, 44, 33, 34, 92, 43, 32, 42}
Output: 5
Explanation: 
The subsequence 36, 35, 33, 34, 32 is the longest 
subsequence of consecutive elements.

Naive Approach: The idea is to first sort the array and find the longest subarray with consecutive elements. 
After sorting the array and removing the multiple occurrences of elements, run a loop and keep a count and max (both initially zero). Run a loop from start to end and if the current element is not equal to the previous (element+1) then set the count to 1 else increase the count. Update max with a maximum of count and max. 

C++




// C++ program to find longest
// contiguous subsequence
#include <bits/stdc++.h>
using namespace std;
 
// Returns length of the longest
// contiguous subsequence
int findLongestConseqSubseq(int arr[], int n)
{
    int ans = 0, count = 0;
 
    // sort the array
    sort(arr, arr + n);
 
    vector<int> v;
    v.push_back(arr[0]);
 
    //insert repeated elements only once in the vector
    for (int i = 1; i < n; i++)
    {
        if (arr[i] != arr[i - 1])
            v.push_back(arr[i]);
    }
    // find the maximum length
    // by traversing the array
    for (int i = 0; i < v.size(); i++)
    {
         
        // Check if the current element is equal
        // to previous element +1
        if (i > 0 && v[i] == v[i - 1] + 1)
            count++;
        // reset the count
        else
            count = 1;
 
        // update the maximum
        ans = max(ans, count);
    }
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 2, 3 };
    int n = sizeof arr / sizeof arr[0];
    cout << "Length of the Longest contiguous subsequence "
            "is "
         << findLongestConseqSubseq(arr, n);
    return 0;
}


Java




// Java program to find longest
// contiguous subsequence
import java.io.*;
import java.util.*;
 
class GFG
{
 
    static int findLongestConseqSubseq(int arr[],
                                           int n)
    {
 
        // Sort the array
        Arrays.sort(arr);
 
        int ans = 0, count = 0;
       
        ArrayList<Integer> v = new ArrayList<Integer>();
        v.add(10);
       
        // Insert repeated elements
        // only once in the vector
        for (int i = 1; i < n; i++)
        {
            if (arr[i] != arr[i - 1])
                v.add(arr[i]);
        }
    
 
        // Find the maximum length
        // by traversing the array
        for (int i = 0; i < v.size(); i++)
        {
 
            // Check if the current element is
            // equal to previous element +1
            if (i > 0 &&v.get(i) == v.get(i - 1) + 1)
                count++;
            else
                count = 1;
 
            // Update the maximum
            ans = Math.max(ans, count);
        }
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 9, 3, 10, 4, 20, 2 };
        int n = arr.length;
 
        System.out.println(
            "Length of the Longest "
            + "contiguous subsequence is "
            + findLongestConseqSubseq(arr, n));
    }
}
 
// This code is contributed by parascoding


Python3




# Python3 program to find longest
# contiguous subsequence
 
# Returns length of the longest
# contiguous subsequence
def findLongestConseqSubseq(arr, n):
     
    ans = 0
    count = 0
 
    # Sort the array
    arr.sort()
 
    v = []
 
    v.append(arr[0])
 
    # Insert repeated elements only
    # once in the vector
    for i in range(1, n):
        if (arr[i] != arr[i - 1]):
            v.append(arr[i])
 
    # Find the maximum length
    # by traversing the array
    for i in range(len(v)):
 
        # Check if the current element is
        # equal to previous element +1
        if (i > 0 and v[i] == v[i - 1] + 1):
            count += 1
             
        # Reset the count
        else:
            count = 1
             
        # Update the maximum
        ans = max(ans, count)
         
    return ans
 
# Driver code
arr = [ 1, 2, 2, 3 ]
n = len(arr)
 
print("Length of the Longest contiguous subsequence is",
       findLongestConseqSubseq(arr, n))
 
# This code is contributed by avanitrachhadiya2155


C#




// C# program to find longest
// contiguous subsequence
using System;
using System.Collections.Generic;
 
class GFG{
     
static int findLongestConseqSubseq(int[] arr,
                                   int n)
{
     
    // Sort the array
    Array.Sort(arr);
 
    int ans = 0, count = 0;
    
    List<int> v = new List<int>();
    v.Add(10);
    
    // Insert repeated elements
    // only once in the vector
    for(int i = 1; i < n; i++)
    {
        if (arr[i] != arr[i - 1])
            v.Add(arr[i]);
    }
     
    // Find the maximum length
    // by traversing the array
    for(int i = 0; i < v.Count; i++)
    {
         
        // Check if the current element is
        // equal to previous element +1
        if (i > 0 && v[i] == v[i - 1] + 1)
            count++;
        else
            count = 1;
 
        // Update the maximum
        ans = Math.Max(ans, count);
    }
    return ans;
}
 
// Driver code
static void Main()
{
    int[] arr = { 1, 9, 3, 10, 4, 20, 2 };
    int n = arr.Length;
 
    Console.WriteLine("Length of the Longest " +
                      "contiguous subsequence is " +
                      findLongestConseqSubseq(arr, n));
}
}
 
// This code is contributed by divyeshrabadiya07


Output

Length of the Longest contiguous subsequence is 3

Complexity Analysis: 



  • Time complexity: O(nLogn). 
    Time to sort the array is O(nlogn).
  • Auxiliary space : O(1). 
    As no extra space is needed.

Thanks to Hao.W for suggesting the above solution.

Efficient solution: 
This problem can be solved in O(n) time using an Efficient Solution. The idea is to use Hashing. We first insert all elements in a Set. Then check all the possible starts of consecutive subsequences.

 Algorithm: 

  1. Create an empty hash.
  2. Insert all array elements to hash.
  3. Do following for every element arr[i]
  4. Check if this element is the starting point of a subsequence. To check this, simply look for arr[i] – 1 in the hash, if not found, then this is the first element a subsequence.
  5. If this element is the first element, then count the number of elements in the consecutive starting with this element. Iterate from arr[i] + 1 till the last element that can be found.
  6. If the count is more than the previous longest subsequence found, then update this.

Below image is a dry run of the above approach: 

Below is the implementation of the above approach: 

C++




// C++ program to find longest
// contiguous subsequence
#include <bits/stdc++.h>
using namespace std;
 
// Returns length of the longest
// contiguous subsequence
int findLongestConseqSubseq(int arr[], int n)
{
    unordered_set<int> S;
    int ans = 0;
 
    // Hash all the array elements
    for (int i = 0; i < n; i++)
        S.insert(arr[i]);
 
    // check each possible sequence from
    // the start then update optimal length
    for (int i = 0; i < n; i++)
    {
        // if current element is the starting
        // element of a sequence
        if (S.find(arr[i] - 1) == S.end())
        {
            // Then check for next elements
            // in the sequence
            int j = arr[i];
            while (S.find(j) != S.end())
                j++;
 
            // update  optimal length if
            // this length is more
            ans = max(ans, j - arr[i]);
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 9, 3, 10, 4, 20, 2 };
    int n = sizeof arr / sizeof arr[0];
    cout << "Length of the Longest contiguous subsequence "
            "is "
         << findLongestConseqSubseq(arr, n);
    return 0;
}


Java




// Java program to find longest
// consecutive subsequence
import java.io.*;
import java.util.*;
 
class ArrayElements {
    // Returns length of the longest
    // consecutive subsequence
    static int findLongestConseqSubseq(int arr[], int n)
    {
        HashSet<Integer> S = new HashSet<Integer>();
        int ans = 0;
 
        // Hash all the array elements
        for (int i = 0; i < n; ++i)
            S.add(arr[i]);
 
        // check each possible sequence from the start
        // then update optimal length
        for (int i = 0; i < n; ++i)
        {
            // if current element is the starting
            // element of a sequence
            if (!S.contains(arr[i] - 1))
            {
                // Then check for next elements
                // in the sequence
                int j = arr[i];
                while (S.contains(j))
                    j++;
 
                // update  optimal length if this
                // length is more
                if (ans < j - arr[i])
                    ans = j - arr[i];
            }
        }
        return ans;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int arr[] = { 1, 9, 3, 10, 4, 20, 2 };
        int n = arr.length;
        System.out.println(
            "Length of the Longest consecutive subsequence is "
            + findLongestConseqSubseq(arr, n));
    }
}
// This code is contributed by Aakash Hasija


Python




# Python program to find longest contiguous subsequence
 
from sets import Set
 
 
def findLongestConseqSubseq(arr, n):
 
    s = Set()
    ans = 0
 
    # Hash all the array elements
    for ele in arr:
        s.add(ele)
 
    # check each possible sequence from the start
    # then update optimal length
    for i in range(n):
 
         # if current element is the starting
        # element of a sequence
        if (arr[i]-1) not in s:
 
            # Then check for next elements in the
            # sequence
            j = arr[i]
            while(j in s):
                j += 1
 
            # update  optimal length if this length
            # is more
            ans = max(ans, j-arr[i])
    return ans
 
 
# Driver code
if __name__ == '__main__':
    n = 7
    arr = [1, 9, 3, 10, 4, 20, 2]
    print "Length of the Longest contiguous subsequence is ",
    print findLongestConseqSubseq(arr, n)
 
# Contributed by: Harshit Sidhwa


C#




using System;
using System.Collections.Generic;
 
// C# program to find longest consecutive subsequence
 
public class ArrayElements {
    // Returns length of the
    // longest consecutive subsequence
    public static int findLongestConseqSubseq(int[] arr,
                                              int n)
    {
        HashSet<int> S = new HashSet<int>();
        int ans = 0;
 
        // Hash all the array elements
        for (int i = 0; i < n; ++i) {
            S.Add(arr[i]);
        }
 
        // check each possible sequence from the start
        // then update optimal length
        for (int i = 0; i < n; ++i)
        {
            // if current element is the starting
            // element of a sequence
            if (!S.Contains(arr[i] - 1))
            {
                // Then check for next elements in the
                // sequence
                int j = arr[i];
                while (S.Contains(j))
                {
                    j++;
                }
 
                // update  optimal length if this length
                // is more
                if (ans < j - arr[i])
                {
                    ans = j - arr[i];
                }
            }
        }
        return ans;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int[] arr = new int[] { 1, 9, 3, 10, 4, 20, 2 };
        int n = arr.Length;
        Console.WriteLine(
            "Length of the Longest consecutive subsequence is "
            + findLongestConseqSubseq(arr, n));
    }
}
 
// This code is contributed by Shrikant13


Output

Length of the Longest contiguous subsequence is 4

 Complexity Analysis: 

  • Time complexity: O(n). 
    Only one traversal is needed and the time complexity is O(n) under the assumption that hash insert and search take O(1) time.
  • Auxiliary space: O(n). 
    To store every element in hashmap O(n) space is needed
     Thanks to Gaurav Ahirwar for the above solution.

Efficient Solution:

This problem can be solved in O(n) time with another Efficient Method, this time the Idea is to use Priority Queue.

Algorithm:

  1. Create a Priority Queue to store the element
  2. Store the first element in a variable
  3. Remove it from the Priority Queue
  4. Check the difference between this removed first element and the new peek element
  5. If the difference is equal to 1 increase count by 1 and repeats step 2 and step 3
  6. If the difference is greater than 1 set counter to 1 and repeat step 2 and step 3
  7. if the difference is equal to 0 repeat step 2 and 3
  8. if counter greater than the previous maximum then store counter to maximum
  9. Continue step 4 to 7 until we reach the end of the Priority Queue
  10. Return the maximum value

C++




// CPP program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
int findLongestConseqSubseq(int arr[], int N)
{
    priority_queue<int, vector<int>, greater<int> > pq;
    for (int i = 0; i < N; i++) {
       
        // adding element from
        // array to PriorityQueue
        pq.push(arr[i]);
    }
 
    // Storing the first element
    // of the Priority Queue
    // This first element is also
    // the smallest element
    int prev = pq.top();
    pq.pop();
 
    // Taking a counter variable with value 1
    int c = 1;
 
    // Storing value of max as 1
    // as there will always be
    // one element
    int max = 1;
    for (int i = 1; i < N; i++) {
       
        // check if current peek
        // element minus previous
        // element is greater then
        // 1 This is done because
        // if it's greater than 1
        // then the sequence
        // doesn't start or is broken here
        if (pq.top() - prev > 1) {
           
            // Store the value of counter to 1
            // As new sequence may begin
            c = 1;
 
            // Update the previous position with the
            // current peek And remove it
            prev = pq.top();
            pq.pop();
        }
 
        // Check if the previous
        //  element and peek are same
        else if (pq.top() - prev == 0) {
           
            // Update the previous position with the
            // current peek And remove it
            prev = pq.top();
            pq.pop();
        }
       
        // If the difference
        // between previous element and peek is 1
        else {
           
            // Update the counter
            // These are consecutive elements
            c++;
 
            // Update the previous position
            //  with the current peek And remove it
            prev = pq.top();
            pq.pop();
        }
       
        // Check if current longest
        // subsequence is the greatest
        if (max < c) {
           
            // Store the current subsequence count as
            // max
            max = c;
        }
    }
    return max;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 9, 3, 10, 4, 20, 2 };
    int n = 7;
 
    cout << "Length of the Longest consecutive subsequence "
            "is "
         << findLongestConseqSubseq(arr, n);
    return 0;
}
// this code is contributed by Manu Pathria


Java




// Java Program to find longest consecutive
// subsequence This Program uses Priority Queue
import java.io.*;
import java.util.PriorityQueue;
public class Longset_Sub
{
    // return the length of the longest
    // subsequence of consecutive integers
    static int findLongestConseqSubseq(int arr[], int N)
    {
 
        PriorityQueue<Integer> pq
            = new PriorityQueue<Integer>();
        for (int i = 0; i < N; i++)
        {
            // adding element from
            // array to PriorityQueue
            pq.add(arr[i]);
        }
         
        // Storing the first element
        // of the Priority Queue
        // This first element is also
        // the smallest element
        int prev = pq.poll();
         
        // Taking a counter variable with value 1
        int c = 1;
         
        // Storing value of max as 1
        // as there will always be
        // one element
        int max = 1;
 
        for (int i = 1; i < N; i++)
        {
            // check if current peek
            // element minus previous
            // element is greater then
            // 1 This is done because
            // if it's greater than 1
            // then the sequence
            // doesn't start or is broken here
            if (pq.peek() - prev > 1)
            {
                // Store the value of counter to 1
                // As new sequence may begin
                c = 1;
                 
                // Update the previous position with the
                // current peek And remove it
                prev = pq.poll();
            }
             
            // Check if the previous
            //  element and peek are same
            else if (pq.peek() - prev == 0)
            {
                // Update the previous position with the
                // current peek And remove it
                prev = pq.poll();
            }
            // if the difference
            // between previous element and peek is 1
            else
            {
                // Update the counter
                // These are consecutive elements
                c++;
                  
                // Update the previous position
                //  with the current peek And remove it
                prev = pq.poll();
            }
 
            // Check if current longest
            // subsequence is the greatest
            if (max < c)
            {
                // Store the current subsequence count as
                // max
                max = c;
            }
        }
 
        return max;
    }
     
    // Driver Code
    public static void main(String args[])
        throws IOException
    {
        int arr[] = { 1, 9, 3, 10, 4, 20, 2 };
        int n = arr.length;
        System.out.println(
            "Length of the Longest consecutive subsequence is "
            + findLongestConseqSubseq(arr, n));
    }
}
// This code is contributed by Sudipa Sarkar


Output

Length of the Longest consecutive subsequence is 4
 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :