Lexicographically smallest K-length subsequence from a given string
Given a string S of length N, the task is to find the lexicographically smallest K-length subsequence from the string S (where K < N).
Examples:
Input: S = “bbcaab”, K = 3
Output: “aab”Input: S = “aabdaabc”, K = 3
Output: “aaa”
Naive Approach: The simplest approach is to generate all possible subsequences of length K from the given string and store all subsequences in a vector. Now, sort the vector and print the string at 0th position for lexicographically the smallest subsequence.
Time Complexity: O(2N)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is Stack Data Structure to keep track of characters in increasing order, to get the lexicographically smallest subsequence. Follow the steps below to solve the problem:
- Initialize a stack, say answer, such that at any index of the string, the stack should contain the smallest K-length subsequence up to the current index.
- Traverse the string and perform the following steps:
- If the stack is empty, then push the current character into the stack.
- Otherwise, iterate until the current element of the string S[i] is less than the top element of the stack and keep popping from the stack to ensure that the size of the stack is at most K.
- If the size of the stack is less than K after the above step, then push the current character into the stack.
- After completing the above steps, print the characters stored in the stack in reverse order to obtain the resultant subsequence string.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find lexicographically // smallest subsequence of size K void smallestSubsequence(string& S, int K) { // Length of string int N = S.size(); // Stores the minimum subsequence stack< char > answer; // Traverse the string S for ( int i = 0; i < N; ++i) { // If the stack is empty if (answer.empty()) { answer.push(S[i]); } else { // Iterate till the current // character is less than the // the character at the top of stack while ((!answer.empty()) && (S[i] < answer.top()) // Check if there are enough // characters remaining // to obtain length K && (answer.size() - 1 + N - i >= K)) { answer.pop(); } // If stack size is < K if (answer.empty() || answer.size() < K) { // Push the current // character into it answer.push(S[i]); } } } // Stores the resultant string string ret; // Iterate until stack is empty while (!answer.empty()) { ret.push_back(answer.top()); answer.pop(); } // Reverse the string reverse(ret.begin(), ret.end()); // Print the string cout << ret; } // Driver Code int main() { string S = "aabdaabc" ; int K = 3; smallestSubsequence(S, K); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to find lexicographically // smallest subsequence of size K static void smallestSubsequence( char []S, int K) { // Length of String int N = S.length; // Stores the minimum subsequence Stack<Character> answer = new Stack<>(); // Traverse the String S for ( int i = 0 ; i < N; ++i) { // If the stack is empty if (answer.isEmpty()) { answer.add(S[i]); } else { // Iterate till the current // character is less than the // the character at the top of stack while ((!answer.isEmpty()) && (S[i] < answer.peek()) // Check if there are enough // characters remaining // to obtain length K && (answer.size() - 1 + N - i >= K)) { answer.pop(); } // If stack size is < K if (answer.isEmpty() || answer.size() < K) { // Push the current // character into it answer.add(S[i]); } } } // Stores the resultant String String ret= "" ; // Iterate until stack is empty while (!answer.isEmpty()) { ret+=(answer.peek()); answer.pop(); } // Reverse the String ret = reverse(ret); // Print the String System.out.print(ret); } static String reverse(String input) { char [] a = input.toCharArray(); int l, r = a.length - 1 ; for (l = 0 ; l < r; l++, r--) { char temp = a[l]; a[l] = a[r]; a[r] = temp; } return String.valueOf(a); } // Driver Code public static void main(String[] args) { String S = "aabdaabc" ; int K = 3 ; smallestSubsequence(S.toCharArray(), K); } } // This code is contributed by shikhasingrajput |
Python3
# CPP program for the above approach # Function to find lexicographically # smallest subsequence of size K def smallestSubsequence(S, K): # Length of string N = len (S) # Stores the minimum subsequence answer = [] # Traverse the string S for i in range (N): # If the stack is empty if ( len (answer) = = 0 ): answer.append(S[i]) else : # Iterate till the current # character is less than the # the character at the top of stack while ( len (answer) > 0 and (S[i] < answer[ len (answer) - 1 ]) and ( len (answer) - 1 + N - i > = K)): answer = answer[: - 1 ] # If stack size is < K if ( len (answer) = = 0 or len (answer) < K): # Push the current # character into it answer.append(S[i]) # Stores the resultant string ret = [] # Iterate until stack is empty while ( len (answer) > 0 ): ret.append(answer[ len (answer) - 1 ]) answer = answer[: - 1 ] # Reverse the string ret = ret[:: - 1 ] ret = ''.join(ret) # Print the string print (ret) # Driver Code if __name__ = = '__main__' : S = "aabdaabc" K = 3 smallestSubsequence(S, K) # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG { // Function to find lexicographically // smallest subsequence of size K static void smallestSubsequence( char []S, int K) { // Length of String int N = S.Length; // Stores the minimum subsequence Stack< char > answer = new Stack< char >(); // Traverse the String S for ( int i = 0; i < N; ++i) { // If the stack is empty if (answer.Count==0) { answer.Push(S[i]); } else { // Iterate till the current // character is less than the // the character at the top of stack while ((answer.Count!=0) && (S[i] < answer.Peek()) // Check if there are enough // characters remaining // to obtain length K && (answer.Count - 1 + N - i >= K)) { answer.Pop(); } // If stack size is < K if (answer.Count==0 || answer.Count < K) { // Push the current // character into it answer.Push(S[i]); } } } // Stores the resultant String String ret= "" ; // Iterate until stack is empty while (answer.Count!=0) { ret+=(answer.Peek()); answer.Pop(); } // Reverse the String ret = reverse(ret); // Print the String Console.Write(ret); } static String reverse(String input) { char [] a = input.ToCharArray(); int l, r = a.Length - 1; for (l = 0; l < r; l++, r--) { char temp = a[l]; a[l] = a[r]; a[r] = temp; } return String.Join( "" ,a); } // Driver Code public static void Main(String[] args) { String S = "aabdaabc" ; int K = 3; smallestSubsequence(S.ToCharArray(), K); } } // This code is contributed by 29AjayKumar |
Javascript
<script> //Javascript program for the above approach //function for reverse function reverse(input) { a = input; var l, r = a.length - 1; for (l = 0; l < r; l++, r--) { var temp = a[l]; a[l] = a[r]; a[r] = temp; } return a; } // Function to find lexicographically // smallest subsequence of size K function smallestSubsequence(S, K) { // Length of string var N = S.length; // Stores the minimum subsequence answer = []; // Traverse the string S for ( var i = 0; i < N; ++i) { // If the stack is empty if (answer.length==0) { answer.push(S[i]); } else { // Iterate till the current // character is less than the // the character at the top of stack while ((answer.length != 0) && (S[i] < answer[answer.length-1]) // Check if there are enough // characters remaining // to obtain length K && (answer.length - 1 + N - i >= K)) { answer.pop(); } // If stack size is < K if (answer.length==0 || answer.length < K) { // Push the current // character into it answer.push(S[i]); } } } // Stores the resultant string var ret = []; // Iterate until stack is empty while (answer.length != 0) { ret += answer[answer.length -1]; answer.pop(); } // Reverse the string reverse(ret); // Print the string document.write(ret); } var S = "aabdaabc" ; var K = 3; smallestSubsequence(S, K); // This code is contributed by SoumikMondal </script> |
aaa
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...