Write a program to print all the LEADERS in the array. An element is leader if it is greater than all the elements to its right side. And the rightmost element is always a leader. For example in the array {16, 17, 4, 3, 5, 2}, leaders are 17, 5 and 2. Let the input array be arr[] and size of the array be size.
Method 1 (Simple) Use two loops. The outer loop runs from 0 to size – 1 and one by one picks all elements from left to right. The inner loop compares the picked element to all the elements to its right side. If the picked element is greater than all the elements to its right side, then the picked element is the leader.
C++
#include<iostream>
usingnamespacestd;
/*C++ Function to print leaders in an array */
voidprintLeaders(intarr[], intsize)
{
for(inti = 0; i < size; i++)
{
intj;
for(j = i+1; j < size; j++)
{
if(arr[i] <=arr[j])
break;
}
if(j == size) // the loop didn't break
cout << arr[i] << " ";
}
}
/* Driver program to test above function */
intmain()
{
intarr[] = {16, 17, 4, 3, 5, 2};
intn = sizeof(arr)/sizeof(arr[0]);
printLeaders(arr, n);
return0;
}
Java
classLeadersInArray
{
/*Java Function to print leaders in an array */
voidprintLeaders(intarr[], intsize)
{
for(inti = 0; i < size; i++)
{
intj;
for(j = i + 1; j < size; j++)
{
if(arr[i] <=arr[j])
break;
}
if(j == size) // the loop didn't break
System.out.print(arr[i] + " ");
}
}
/* Driver program to test above functions */
publicstaticvoidmain(String[] args)
{
LeadersInArray lead = newLeadersInArray();
intarr[] = newint[]{16, 17, 4, 3, 5, 2};
intn = arr.length;
lead.printLeaders(arr, n);
}
}
Python3
# Python Function to print leaders in array
defprintLeaders(arr,size):
fori inrange(0, size):
forj inrange(i+1, size):
ifarr[i]<=arr[j]:
break
ifj ==size-1: # If loop didn't break
print(arr[i],end=' ')
# Driver function
arr=[16, 17, 4, 3, 5, 2]
printLeaders(arr, len(arr))
# This code is contributed by _Devesh Agrawal__
C#
// C# program to print
// leaders in array
usingSystem;
classGFG
{
voidprintLeaders(int[]arr,
intsize)
{
for(inti = 0; i < size; i++)
{
intj;
for(j = i + 1; j < size; j++)
{
if(arr[i] <=arr[j])
break;
}
// the loop didn't break
if(j == size)
Console.Write(arr[i] + " ");
}
}
// Driver Code
publicstaticvoidMain()
{
GFG lead = newGFG();
int[]arr = newint[]{16, 17, 4, 3, 5, 2};
intn = arr.Length;
lead.printLeaders(arr, n);
}
}
// This code is contributed by
// Akanksha Rai(Abby_akku)
PHP
<?php
// PHP Function to print
// leaders in an array
functionprintLeaders($arr, $size)
{
for($i= 0; $i< $size; $i++)
{
for($j= $i+ 1;
$j< $size; $j++)
{
if($arr[$i] <=$arr[$j])
break;
}
// the loop didn't break
if($j== $size)
echo($arr[$i] . " ");
}
}
// Driver Code
$arr= array(16, 17, 4, 3, 5, 2);
$n= sizeof($arr);
printLeaders($arr, $n);
// This code is contributed
// by Shivi_Aggarwal
?>
Javascript
<script>
// Javascript Function to print leaders in an array
functionprintLeaders( arr, size)
{
for(let i = 0; i < size; i++)
{
let j;
for(j = i+1; j < size; j++)
{
if(arr[i] <=arr[j])
break;
}
if(j == size) // the loop didn't break
document.write(arr[i] + " ");
}
}
// driver code
let arr = [ 16, 17, 4, 3, 5, 2 ];
let n = arr.length;
// Function calling
printLeaders(arr, n);
</script>
Output
17 5 2
Time Complexity: O(n*n)
Auxiliary Space: O(1) Method 2 (Scan from right) Scan all the elements from right to left in an array and keep track of maximum till now. When maximum changes its value, print it. Below image is a dry run of the above approach:
Below is the implementation of the above approach:
C++
#include <iostream>
usingnamespacestd;
/* C++ Function to print leaders in an array */
voidprintLeaders(intarr[], intsize)
{
intmax_from_right = arr[size-1];
/* Rightmost element is always leader */
cout << max_from_right << " ";
for(inti = size-2; i >= 0; i--)
{
if(max_from_right < arr[i])
{
max_from_right = arr[i];
cout << max_from_right << " ";
}
}
}
/* Driver program to test above function*/
intmain()
{
intarr[] = {16, 17, 4, 3, 5, 2};
intn = sizeof(arr)/sizeof(arr[0]);
printLeaders(arr, n);
return0;
}
Java
classLeadersInArray
{
/* Java Function to print leaders in an array */
voidprintLeaders(intarr[], intsize)
{
intmax_from_right = arr[size-1];
/* Rightmost element is always leader */
System.out.print(max_from_right + " ");
for(inti = size-2; i >= 0; i--)
{
if(max_from_right < arr[i])
{
max_from_right = arr[i];
System.out.print(max_from_right + " ");
}
}
}
/* Driver program to test above functions */
publicstaticvoidmain(String[] args)
{
LeadersInArray lead = newLeadersInArray();
intarr[] = newint[]{16, 17, 4, 3, 5, 2};
intn = arr.length;
lead.printLeaders(arr, n);
}
}
Python3
# Python function to print leaders in array
defprintLeaders(arr, size):
max_from_right =arr[size-1]
print(max_from_right,end=' ')
fori inrange( size-2, -1, -1):
ifmax_from_right < arr[i]:
print(arr[i],end=' ')
max_from_right =arr[i]
# Driver function
arr =[16, 17, 4, 3, 5, 2]
printLeaders(arr, len(arr))
# This code contributed by _Devesh Agrawal__
C#
// C# program to find Leaders in an array
usingSystem;
classLeadersInArray {
// C# Function to print leaders
// in an array
voidprintLeaders(int[]arr, intsize)
{
intmax_from_right = arr[size - 1];
// Rightmost element is always leader
Console.Write(max_from_right +" ");
for(inti = size - 2; i >= 0; i--)
{
if(max_from_right < arr[i])
{
max_from_right = arr[i];
Console.Write(max_from_right +" ");
}
}
}
// Driver Code
publicstaticvoidMain(String[] args)
{
LeadersInArray lead = newLeadersInArray();
int[]arr = newint[]{16, 17, 4, 3, 5, 2};
intn = arr.Length;
lead.printLeaders(arr, n);
}
}
// This code is contributed
// by Akanksha Rai(Abby_akku)
PHP
<?php
// PHP Function to print
// leaders in an array
functionprintLeaders(&$arr, $size)
{
$max_from_right= $arr[$size- 1];
// Rightmost element
// is always leader
echo($max_from_right);
echo(" ");
for($i= $size- 2;
$i>= 0; $i--)
{
if($max_from_right< $arr[$i])
{
$max_from_right= $arr[$i];
echo($max_from_right);
echo(" ");
}
}
}
// Driver Code
$arr= array(16, 17, 4, 3, 5, 2);
$n= sizeof($arr);
printLeaders($arr, $n);
// This code is contributed
// by Shivi_Aggarwal
?>
Javascript
<script>
/* JavaScript Function to print leaders in an array */
functionprintLeaders(arr,size)
{
let max_from_right = arr[size-1];
/* Rightmost element is always leader */
document.write(max_from_right + " ");
for(let i = size-2; i >= 0; i--)
{
if(max_from_right < arr[i])
{
max_from_right = arr[i];
document.write(max_from_right + " ");
}
}
}
/* Driver program to test above function*/
let arr = [16, 17, 4, 3, 5, 2];
let n = arr.length;
printLeaders(arr, n);
</script>
Output
2 5 17
Time Complexity: O(n) Auxiliary Space: O(1)
Method 3:
In method 2, we get time complexity O(n), but the output we get is not in the same order as the elements appear in our input array, so to get out output in the same order as in the input array, we can use stack data structure.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
usingnamespacestd;
/* C++ Function to print leaders in an array */
voidprintLeaders(intarr[], intsize)
{
/* create stack to store leaders*/
stack<int> sk;
sk.push(arr[size-1]);
for(inti = size-2; i >= 0; i--)
{
if(arr[i] > sk.top())
{
sk.push(arr[i]);
}
}
/* print stack elements*/
/* run loop till stack is not empty*/
while(!sk.empty()){
cout<<sk.top()<<" ";
sk.pop();
}
}
/* Driver program to test above function*/
intmain()
{
intarr[] = {16, 17, 4, 3, 5, 2};
intn = sizeof(arr)/sizeof(arr[0]);
printLeaders(arr, n);
return0;
}
Output
17 5 2
Time complexity: O(n)
Auxiliary space: O(n)
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
We use cookies to ensure you have the best browsing experience on our website. By using our site, you
acknowledge that you have read and understood our
Cookie Policy &
Privacy Policy