Given an array arr[] and an integer K. The task is to find the size of the maximum sub-set such that every pair from the sub-set (X, Y) is of the form Y != (X * K) where X < Y.
Examples:
Input: arr[] = {2, 3, 6, 5, 4, 10}, K = 2
Output: 3
{2, 3, 5} is the required sub-set
Input: arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, K = 2
Output: 6
Approach:
- Sort all the array elements.
- Create an empty set of integers S, which will hold the elements for the sub-set.
- Traverse the sorted array, and for each integer x in the array:
- If x % k = 0 or x / k is not already present in S then insert x into S.
- Else discard x and check the next element.
- Print the size of the set S in the end.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int sizeSubSet( int a[], int k, int n)
{
sort(a, a + n);
unordered_set< int > s;
for ( int i = 0; i < n; i++) {
if (a[i] % k != 0 || s.count(a[i] / k) == 0)
s.insert(a[i]);
}
return s.size();
}
int main()
{
int a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int n = sizeof (a) / sizeof (a[0]);
int k = 2;
cout << sizeSubSet(a, k, n);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int sizeSubSet( int a[], int k, int n)
{
Arrays.sort(a);
HashMap< Integer, Integer> s = new HashMap< Integer, Integer>();
for ( int i = 0 ; i < n; i++)
{
if (a[i] % k != 0 || s.get(a[i] / k) == null )
s.put(a[i], s.get(a[i]) == null ? 1 : s.get(a[i]) + 1 );
}
return s.size();
}
public static void main(String args[])
{
int a[] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 };
int n = a.length;
int k = 2 ;
System.out.println( sizeSubSet(a, k, n));
}
}
|
Python3
import math as mt
def sizeSubSet(a, k, n):
a.sort()
s = set ()
for i in range (n):
if (a[i] % k ! = 0 or a[i] / / k not in s):
s.add(a[i])
return len (s)
a = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]
n = len (a)
k = 2
print (sizeSubSet(a, k, n))
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int sizeSubSet( int []a, int k, int n)
{
Array.Sort(a);
Dictionary< int ,
int > s = new Dictionary< int ,
int >();
for ( int i = 0; i < n; i++)
{
if (a[i] % k != 0 || !s.ContainsKey(a[i] / k))
{
if (s.ContainsKey(a[i]))
{
var val = s[a[i]];
s.Remove(a[i]);
s.Add(a[i], val + 1);
}
else
{
s.Add(a[i], 1);
}
}
}
return s.Count;
}
public static void Main(String []args)
{
int []a = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int n = a.Length;
int k = 2;
Console.WriteLine(sizeSubSet(a, k, n));
}
}
|
PHP
<?php
function sizeSubSet( $a , $k , $n )
{
sort( $a ) ;
$s = array ();
for ( $i = 0 ; $i < $n ; $i ++)
{
if ( $a [ $i ] % $k != 0 or
!in_array( floor ( $a [ $i ] / $k ), $s ))
array_push ( $s , $a [ $i ]);
}
return sizeof( $s );
}
$a = array (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 );
$n = sizeof( $a );
$k = 2;
echo sizeSubSet( $a , $k , $n );
?>
|
Javascript
<script>
function sizeSubSet(a, k, n)
{
a.sort( function (a, b){ return a - b;});
let s = new Map();
for (let i = 0; i < n; i++)
{
if (a[i] % k != 0 ||
s.get(a[i] / k) == null )
s.set(a[i], s.get(a[i]) == null ?
1 : s.get(a[i]) + 1);
}
return s.size;
}
let a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
let n = a.length;
let k = 2;
document.write(sizeSubSet(a, k, n));
</script>
|
Time Complexity: O(n*log(n)), As we are sorting the array
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
05 Jan, 2023
Like Article
Save Article