# Largest number with prime digits

Given a huge integer value n, find the largest integer value x such that x <= n and all the digits of x are prime.

Examples:

Input : n = 45
Output : 37
37 is the largest number smaller than
or equal to with all prime digits.

Input : n = 1000
Output : 777

Input : n = 7721
Output : 7577

Input : n = 7221
Output : 5777

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We know that the prime digits are 2, 3, 5 and 7. Also since we have to manipulate each digit of a very large number it will be easier if we do it as a string. The main idea is to find the first non-prime digit and then
find the first digit greater than 2 in its left. Now we can replace the found digit with the prime digit that is just less than it. If the digit is 2, we have to erase it and replace the next digit with 7. After this we can replace the remaining digits to its right by 7.

Following is the implementation of the above algorithm:

## C++

 // CPP program to find largest number smaller than // equal to n with all prime digits. #include using namespace std;    // check if character is prime bool isPrime(char c) {     return (c == '2' || c == '3' || c == '5' || c == '7'); }    // replace with previous prime character void decrease(string& s, int i) {     // if 2 erase s[i] and replace next with 7     if (s[i] <= '2') {         s.erase(i, 1);         s[i] = '7';     }        else if (s[i] == '3')         s[i] = '2';     else if (s[i] <= '5')         s[i] = '3';     else if (s[i] <= '7')         s[i] = '5';     else         s[i] = '7';        return; }    string primeDigits(string s) {     for (int i = 0; i < s.length(); i++) {            // find first non prime char         if (!isPrime(s[i])) {                // find first char greater than 2             while (s[i] <= '2' && i >= 0)                 i--;                // like 20             if (i < 0) {                 i = 0;                 decrease(s, i);             }                // like 7721             else                 decrease(s, i);                // replace remaining with 7             for (int j = i + 1; j < s.length(); j++)                  s[j] = '7';                            break;         }     }        return s; }    // Driver code int main() {     string s = "45";     cout << primeDigits(s) << endl;        s = "1000";     cout << primeDigits(s) << endl;        s = "7721";     cout << primeDigits(s) << endl;        s = "7221";     cout << primeDigits(s) << endl;        s = "74545678912345689748593275897894708927680";     cout << primeDigits(s) << endl;        return 0; }

## Java

 // Java program to find largest number smaller than  // equal to n with all prime digits.  class GFG {        // check if character is prime     public static boolean isPrime(char c)     {         return (c == '2' || c == '3' || c == '5' || c == '7');     }        // replace with previous prime character     public static void decrease(StringBuilder s, int i)     {         if (s.charAt(i) <= '2')          {                // if 2 erase s[i] and replace next with 7             s.deleteCharAt(i);             s.setCharAt(i, '7');         }          else if (s.charAt(i) == '3')             s.setCharAt(i, '2');         else if (s.charAt(i) <= '5')             s.setCharAt(i, '3');         else if (s.charAt(i) <= '7')             s.setCharAt(i, '5');         else             s.setCharAt(i, '7');            return;     }        public static String primeDigits(StringBuilder s)      {         for (int i = 0; i < s.length(); i++)          {                // find first non prime char             if (!isPrime(s.charAt(i)))              {                    // find first char greater than 2                 while (i >= 0 && s.charAt(i) <= '2')                     i--;                                    // like 20                 if (i < 0)                 {                     i = 0;                     decrease(s, i);                 }                                     // like 7721                 else                     decrease(s, i);                    // replace remaining with 7                 for (int j = i + 1; j < s.length(); j++)                     s.setCharAt(j, '7');                 break;             }         }            return s.toString();     }        // Driver code     public static void main(String[] args)      {         StringBuilder s = new StringBuilder("45");         System.out.println(primeDigits(s));            s = new StringBuilder("1000");         System.out.println(primeDigits(s));            s = new StringBuilder("7721");         System.out.println(primeDigits(s));            s = new StringBuilder("7221");         System.out.println(primeDigits(s));            s = new StringBuilder("74545678912345689748593275897894708927680");         System.out.println(primeDigits(s));     } }    // This code is contributed by // sanjeev2552

## Python3

 # Python3 program to find largest number  # smaller than equal to n with all prime digits.    # check if character is prime def isPrime(c):     return (c == '2' or c == '3' or             c == '5' or c == '7')    # replace with previous prime character def decrease(s, i):            # if 2 eras[i] and replace next with 7     if (s[i] <= '2'):                    # s.erase(i, 1);         s[i] = '7'     elif (s[i] == '3'):         s[i] = '2'     elif (s[i] <= '5'):         s[i] = '3'     elif (s[i] <= '7'):         s[i] = '5'     else:         s[i] = '7'    def primeDigits(s):     s = [i for i in s]     i = 0        while i < len(s):            # find first non prime char         if (isPrime(s[i]) == False):                # find first char greater than 2             while (s[i] <= '2' and i >= 0):                 i -= 1                # like 20             if (i < 0):                 i = 0                 decrease(s, i)                        # like 7721             else:                 decrease(s, i)                # replace remaining with 7             for j in range(i + 1,len(s)):                 s[j] = '7'                break         i += 1        return "".join(s)    # Driver code s = "45" print(primeDigits(s))    s = "1000" print(primeDigits(s))    s = "7721" print(primeDigits(s))    s = "7221" print(primeDigits(s))    s = "74545678912345689748593275897894708927680" print(primeDigits(s))    # This code is contributed by Mohit Kumar

## PHP

 = 0 &&                     \$s[\$i] <= '2')                 --\$i;                // like 20             if (\$i < 0)              {                 \$i = 0;                 \$s = decrease(\$s, \$i);             }                // like 7721             else                 \$s = decrease(\$s, \$i);                // replace remaining with 7             for (\$j = \$i + 1;                   \$j < strlen(\$s); \$j++)                  \$s[\$j] = '7';                     break;         }     }        return \$s; }    // Driver code \$s = "45"; echo primeDigits(\$s) . "\n";    \$s = "1000"; echo primeDigits(\$s) . "\n";    \$s = "7721"; echo primeDigits(\$s) . "\n";    \$s = "7221"; echo primeDigits(\$s) . "\n";    \$s = "74545678912345689748593275897894708927680"; echo primeDigits(\$s);    // This code is contributed by mits. ?>

Output:

37
777
7577
5777
73777777777777777777777777777777777777777

The time complexity of the above program is O(N) where N is the length of the string.

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.