Given three integers A, B and K. We need to find no. of K-prime numbers in the range [A, B]. A number is called K-prime if it has exactly K distinct prime factors.

**Examples:**

Input : A = 4, B = 10, K = 2. Output : 6 10 Given range is [4, 5, 6, 7, 8, 9, 10]. From the above range 6 and 10 have 2 distinct prime factors, 6 = 3*2; 10 = 5*2. Input : A = 14, B = 18, K = 2. Output : 14 15 18 Range = [14, 15]. Both 14, 15 and 18 have 2 distinct prime factors, 14 = 7*2, 15 = 3*5 and 18 = 2*3*3

A **simple solution** is to traverse through given range. For every element of the range, find its prime factors. Finally print all those numbers whose prime factors are k.

An **efficient solution** is to use Sieve Of Eratosthenes Algorithm

prime[n] = {true}; for (int p=2; p*p<=n; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true) { // Update all multiples of p for (int i=p*2; i<=n; i += p) prime[i] = false; } }

If we observe the above algorithm clearly it has a property of iterating through all the multiples of prime numbers less than N. So the number of times the algorithm marks a number not prime is equal to the number of prime factors of that number. To achieve this, maintain an array called marked and increase the count of a number every time when it is marked as not prime by the algorithm. And in the next step, we iterate through all the numbers in the range [A, B] and increase our count of k-prime numbers if marked[number] == K.

## C++

`// CPP program to count all those numbers in` `// given range whose count of prime factors` `// is k` `#include <bits/stdc++.h>` `using` `namespace` `std;` `void` `printKPFNums(` `int` `A, ` `int` `B, ` `int` `K)` `{` ` ` `// Count prime factors of all numbers` ` ` `// till B.` ` ` `bool` `prime[B+1] = { ` `true` `};` ` ` `int` `p_factors[B+1] = { 0 };` ` ` `for` `(` `int` `p = 2; p <= B; p++)` ` ` `if` `(p_factors[p] == 0)` ` ` `for` `(` `int` `i = p; i <= B; i += p)` ` ` `p_factors[i]++;` ` ` `// Print all numbers with k prime factors` ` ` `for` `(` `int` `i = A; i <= B; i++)` ` ` `if` `(p_factors[i] == K)` ` ` `cout << i << ` `" "` `;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `A = 14, B = 18, K = 2;` ` ` `printKPFNums(A, B, K);` ` ` `return` `0;` `}` |

## Java

`// Java program to count` `// all those numbers in` `// given range whose count` `// of prime factors` `// is k` `import` `java.io.*;` `import` `java.util.*;` `class` `GFG {` ` ` ` ` `static` `void` `printKPFNums(` `int` `A, ` `int` `B, ` `int` `K)` ` ` `{` ` ` `// Count prime factors of all numbers` ` ` `// till B.` ` ` `int` `p_factors[] = ` `new` `int` `[B+` `1` `];` ` ` `Arrays.fill(p_factors,` `0` `);` ` ` `for` `(` `int` `p = ` `2` `; p <= B; p++)` ` ` `if` `(p_factors[p] == ` `0` `)` ` ` `for` `(` `int` `i = p; i <= B; i += p)` ` ` `p_factors[i]++;` ` ` ` ` `// Print all numbers with k prime factors` ` ` `for` `(` `int` `i = A; i <= B; i++)` ` ` `if` `(p_factors[i] == K)` ` ` `System.out.print( i + ` `" "` `);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main(String args[])` ` ` `{` ` ` `int` `A = ` `14` `, B = ` `18` `, K = ` `2` `;` ` ` `printKPFNums(A, B, K);` ` ` `}` `}` `// This code is contributed` `// by Nikita Tiwari.` |

## Python3

`# Python 3 program to count` `# all those numbers in` `# given range whose count` `# of prime factors` `# is k` `def` `printKPFNums(A, B, K) :` ` ` `# Count prime factors` ` ` `# of all numbers` ` ` `# till B.` ` ` `prime ` `=` `[ ` `True` `]` `*` `(B` `+` `1` `)` ` ` `p_factors` `=` `[ ` `0` `]` `*` `(B` `+` `1` `)` ` ` `for` `p ` `in` `range` `(` `2` `,B` `+` `1` `) :` ` ` `if` `(p_factors[p] ` `=` `=` `0` `) :` ` ` `for` `i ` `in` `range` `(p,B` `+` `1` `,p) :` ` ` `p_factors[i] ` `=` `p_factors[i] ` `+` `1` ` ` ` ` `# Print all numbers with` ` ` `# k prime factors` ` ` `for` `i ` `in` `range` `(A,B` `+` `1` `) :` ` ` `if` `(p_factors[i] ` `=` `=` `K) :` ` ` `print` `( i ,end` `=` `" "` `)` `# Driver code` `A ` `=` `14` `B ` `=` `18` `K ` `=` `2` `printKPFNums(A, B, K)` `# This code is contributed` `# by Nikita Tiwari.` |

## C#

`// C# program to count all` `// those numbers in given` `// range whose count of` `// prime factors is k` `using` `System;` `class` `GFG {` ` ` ` ` `static` `void` `printKPFNums(` `int` `A, ` `int` `B,` ` ` `int` `K)` ` ` `{` ` ` `// Count prime factors of` ` ` `// all numbers till B.` ` ` `bool` `[]prime = ` `new` `bool` `[B + 1];` ` ` ` ` `for` `(` `int` `i = 0; i < B + 1; i++)` ` ` `prime[i] = ` `true` `;` ` ` ` ` `int` `[]p_factors = ` `new` `int` `[B + 1];` ` ` ` ` `for` `(` `int` `i = 0; i < B + 1; i++)` ` ` `p_factors[i] = 0;` ` ` `for` `(` `int` `p = 2; p <= B; p++)` ` ` `if` `(p_factors[p] == 0)` ` ` `for` `(` `int` `i = p; i <= B; i += p)` ` ` `p_factors[i]++;` ` ` ` ` `// Print all numbers with` ` ` `// k prime factors` ` ` `for` `(` `int` `i = A; i <= B; i++)` ` ` `if` `(p_factors[i] == K)` ` ` `Console.Write( i + ` `" "` `);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `int` `A = 14, B = 18, K = 2;` ` ` `printKPFNums(A, B, K);` ` ` `}` `}` `// This code is contributed by nitin mittal.` |

## PHP

`<?php` `// PHP program to count all those numbers` `// in given range whose count of prime` `// factors is k` `function` `printKPFNums(` `$A` `, ` `$B` `, ` `$K` `)` `{` ` ` `// Count prime factors of all` ` ` `// numbers till B.` ` ` `$prime` `= ` `array_fill` `(true, ` `$B` `+ 1, NULL);` ` ` `$p_factors` `= ` `array_fill` `(0, ` `$B` `+ 1, NULL);` ` ` `for` `(` `$p` `= 2; ` `$p` `<= ` `$B` `; ` `$p` `++)` ` ` `if` `(` `$p_factors` `[` `$p` `] == 0)` ` ` `for` `(` `$i` `= ` `$p` `; ` `$i` `<= ` `$B` `; ` `$i` `+= ` `$p` `)` ` ` `$p_factors` `[` `$i` `]++;` ` ` `// Print all numbers with` ` ` `// k prime factors` ` ` `for` `(` `$i` `= ` `$A` `; ` `$i` `<= ` `$B` `; ` `$i` `++)` ` ` `if` `(` `$p_factors` `[` `$i` `] == ` `$K` `)` ` ` `echo` `$i` `. ` `" "` `;` `}` `// Driver code` `$A` `= 14;` `$B` `= 18;` `$K` `= 2;` `printKPFNums(` `$A` `, ` `$B` `, ` `$K` `);` `// This code is contributed` `// by ChitraNayal` `?>` |

## Javascript

`<script>` `// Javascript program to count all those` `// numbers in given range whose count` `// of prime factors is k` `// Returns the sum of first` `// n odd numbers` `function` `prletKPFNums(A, B, K)` `{` ` ` ` ` `// Count prime factors of` ` ` `// all numbers till B.` ` ` `let prime = [];` ` ` ` ` `for` `(let i = 0; i < B + 1; i++)` ` ` `prime[i] = ` `true` `;` ` ` ` ` `let p_factors = [];` ` ` ` ` `for` `(let i = 0; i < B + 1; i++)` ` ` `p_factors[i] = 0;` ` ` `for` `(let p = 2; p <= B; p++)` ` ` `if` `(p_factors[p] == 0)` ` ` `for` `(let i = p; i <= B; i += p)` ` ` `p_factors[i]++;` ` ` ` ` `// Print let all numbers with` ` ` `// k prime factors` ` ` `for` `(let i = A; i <= B; i++)` ` ` `if` `(p_factors[i] == K)` ` ` `document.write( i + ` `" "` `);` `}` `// Driver code` `let A = 14, B = 18, K = 2;` `prletKPFNums(A, B, K);` `// This code is contributed by sanjoy_62` `</script>` |

**Output:**

14 15 18

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**