Open In App
Related Articles

Iterative Postorder traversal | Set 3

Improve Article
Improve
Save Article
Save
Like Article
Like

We have seen different ways of performing postorder traversal on Binary Trees. 
 

Here is another way of performing the postorder traversal on a Binary Tree iteratively using a single stack.
Consider the Below Terminologies: 
 

0 -  Left element
1 -  Right element
2 -  Node element

Following is the detailed algorithm: 
 

Take a Stack and perform the below operations:

1) Insert a pair of the root node as (node, 0).
2) Pop the top element to get the pair 
   (Let a = node and b be the variable)
    If b is equal to 0:
       Push another pair as (node, 1) and 
       Push the left child as (node->left, 0)
       Repeat Step 2
    Else If b is equal to 1:
       Push another pair as (node, 2) and 
       Push right child of node as (node->right, 0)
       Repeat Step 2
    Else If b is equal to 2:
       Print(node->data)
3) Repeat the above steps while stack is not empty

Consider the Below Binary Tree with just 3 nodes: 
 

Illustration: 
 

1) Push(a, 0)
   Stack - (a, 0)

2) top = (a, 0)
   Push(a, 1)
   Push(b, 0)
   Stack - (b, 0)
           (a, 1)

3) top = (b, 0)
   Push(b, 1)
   Stack - (b, 1)
           (a, 1)

4) top = (b, 1)
   Push(b, 2)
   Stack - (b, 2)
           (a, 1)

5) top = (b, 2)
   print(b)
   Stack -(a, 1)

6) top = (a, 1)
   push(a, 2)
   push(c, 0)
   Stack -  (c, 0)
            (a, 2)

7) top = (c, 0)
   push(c, 1)
   Stack - (c, 1)
            (a, 2)

8) top = (c, 1)
   push(c, 2)
   Stack - (c, 2)
            (a, 2)

9) top = (c, 2)
   print(c)
   Stack - (a, 2)

10) top = (a, 2)
    print(a)
    Stack - empty()

Below is the implementation of the above approach: 
 

C++




// C++ program to print postorder traversal
// iteratively
 
#include <bits/stdc++.h>
using namespace std;
 
// Binary Tree Node
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// Helper function to create a
// new Binary Tree node
struct Node* newNode(int data)
{
    struct Node* node = new Node;
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    return (node);
}
 
// Function to perform postorder
// traversal iteratively
void iterativePostorder(Node* root)
{
    stack<pair<Node*, int> > st;
    st.push(make_pair(root, 0));
 
    while (!st.empty()) {
        struct Node* temp = st.top().first;
        int b = st.top().second;
        st.pop();
 
        if (temp == NULL)
            continue;
 
        if (b == 0) {
            st.push(make_pair(temp, 1));
 
            if (temp->left != NULL)
                st.push(make_pair(temp->left, 0));
        }
        else if (b == 1) {
            st.push(make_pair(temp, 2));
 
            if (temp->right != NULL)
                st.push(make_pair(temp->right, 0));
        }
        else
            cout << temp->data << " ";
    }
}
 
// Driver Code
int main()
{
    // Construct the below Binary Tree
    //        1
    //       / \
    //      2   3
    //    /   \
    //   4     5
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    iterativePostorder(root);
 
    return 0;
}


Java




// Java program to print postorder traversal
// iteratively
import java.util.*;
 
class GFG
{
 
//pair class
static class Pair
{
    Node first;
    int second;
    Pair(Node a,int b)
    {
        first = a;
        second = b;
    }
}
 
// Binary Tree Node
static class Node
{
    int data;
    Node left;
    Node right;
};
 
// Helper function to create a
// new Binary Tree node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = null;
    node.right = null;
    return (node);
}
 
// Function to perform postorder
// traversal iteratively
static void iterativePostorder(Node root)
{
    Stack<Pair> st = new Stack<Pair>();
    st.add(new Pair(root, 0));
 
    while (st.size() > 0)
    {
        Node temp = st.peek().first;
        int b = st.peek().second;
        st.pop();
 
        if (temp == null)
            continue;
 
        if (b == 0)
        {
            st.add(new Pair(temp, 1));
 
            if (temp.left != null)
                st.add(new Pair(temp.left, 0));
        }
        else if (b == 1)
        {
            st.add(new Pair(temp, 2));
 
            if (temp.right != null)
                st.add(new Pair(temp.right, 0));
        }
        else
            System.out.print( temp.data + " ");
    }
}
 
// Driver Code
public static void main(String args[])
{
    // Construct the below Binary Tree
    //     1
    //     / \
    //     2 3
    // / \
    // 4     5
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
 
    iterativePostorder(root);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python program to print postorder traversal
# iteratively
 
# pair class
class Pair:
    def __init__(self, a, b):
        self.first = a
        self.second = b
     
# Binary Tree Node
class Node :
    def __init__(self):
        self.data = 0
        self.left = None
        self.right = None
 
# Helper function to create a
# new Binary Tree node
def newNode(data):
 
    node = Node()
    node.data = data
    node.left = None
    node.right = None
    return (node)
 
# Function to perform postorder
# traversal iteratively
def iterativePostorder( root):
 
    st = []
    st.append(Pair(root, 0))
 
    while (len(st)> 0):
     
        temp = st[-1].first
        b = st[-1].second
        st.pop()
 
        if (temp == None):
            continue
 
        if (b == 0) :
            st.append(Pair(temp, 1))
 
            if (temp.left != None):
                st.append(Pair(temp.left, 0))
         
        elif (b == 1):
            st.append(Pair(temp, 2))
 
            if (temp.right != None):
                st.append(Pair(temp.right, 0))
         
        else:
            print( temp.data ,end= " ")
     
# Driver Code
 
# Construct the below Binary Tree
#     1
#     / \
# 2 3
# / \
# 4 5
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
 
iterativePostorder(root)
 
# This code is contributed by Arnab Kundu


C#




// C# program to print postorder traversal
// iteratively
using System;
using System.Collections.Generic;
class GFG
{
 
//pair class
public class Pair
{
    public Node first;
    public int second;
    public Pair(Node a,int b)
    {
        first = a;
        second = b;
    }
}
 
// Binary Tree Node
public class Node
{
    public int data;
    public Node left;
    public Node right;
};
 
// Helper function to create a
// new Binary Tree node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = null;
    node.right = null;
    return (node);
}
 
// Function to perform postorder
// traversal iteratively
static void iterativePostorder(Node root)
{
    Stack<Pair> st = new Stack<Pair>();
    st.Push(new Pair(root, 0));
 
    while (st.Count > 0)
    {
        Node temp = st.Peek().first;
        int b = st.Peek().second;
        st.Pop();
 
        if (temp == null)
            continue;
 
        if (b == 0)
        {
            st.Push(new Pair(temp, 1));
 
            if (temp.left != null)
                st.Push(new Pair(temp.left, 0));
        }
        else if (b == 1)
        {
            st.Push(new Pair(temp, 2));
 
            if (temp.right != null)
                st.Push(new Pair(temp.right, 0));
        }
        else
            Console.Write(temp.data + " ");
    }
}
 
// Driver Code
public static void Main(String []args)
{
    // Construct the below Binary Tree
    //     1
    //     / \
    //     2 3
    // / \
    // 4     5
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
 
    iterativePostorder(root);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
    // JavaScript program to print
    // postorder traversal iteratively
     
    // Binary Tree Node
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // Helper function to create a
    // new Binary Tree node
    function newNode(data)
    {
        let node = new Node(data);
        return (node);
    }
 
    // Function to perform postorder
    // traversal iteratively
    function iterativePostorder(root)
    {
        let st = [];
        st.push([root, 0]);
 
        while (st.length > 0)
        {
            let temp = st[st.length - 1][0];
            let b = st[st.length - 1][1];
            st.pop();
 
            if (temp == null)
                continue;
 
            if (b == 0)
            {
                st.push([temp, 1]);
 
                if (temp.left != null)
                    st.push([temp.left, 0]);
            }
            else if (b == 1)
            {
                st.push([temp, 2]);
 
                if (temp.right != null)
                    st.push([temp.right, 0]);
            }
            else
                document.write(temp.data + " ");
        }
    }
     
    // Construct the below Binary Tree
    //     1
    //     / \
    //     2 3
    // / \
    // 4     5
    let root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
   
    iterativePostorder(root);
 
</script>


Output: 

4 5 2 3 1

 

Time Complexity: O(N)
Auxiliary Space: O(N) 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 02 Nov, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials