Open In App
Related Articles

Inverse Permutation

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array of size n of integers in range from 1 to n, we need to find the inverse permutation of that array.

An inverse permutation is a permutation which you will get by inserting position of an element at the position specified by the element value in the array. For better understanding, consider the following example: 

Suppose we found element 4 at position 3 in an array, then in reverse permutation, we insert 3 (position of element 4 in the array) in position 4 (element value). 

Basically, An inverse permutation is a permutation in which each number and the number of the place which it occupies is exchanged.

The array should contain element from 1 to array_size.

Example 1 : 

Input  = {1, 4, 3, 2}
Output = {1, 4, 3, 2}

In this, For element 1 we insert position of 1 from arr1 i.e 1 at position 1 in arr2. For element 4 in arr1, we insert 2 from arr1 at position 4 in arr2. Similarly, for element 2 in arr1, we insert position of 2 i.e 4 in arr2. 

Example 2 :
Input  = {2, 3, 4, 5, 1}
Output = {5, 1, 2, 3, 4}

In this example, for element 2 we insert position of 2 from arr1 in arr2 at position 2. similarly, we find the inverse permutation of other elements.
Consider an array arr having elements 1 to n.

Method 1: In this method, we take element one by one and check elements in increasing order and print the position of the element where we find that element. 

Implementation:

C++




// Naive CPP Program to find inverse permutation.
#include <bits/stdc++.h>
using namespace std;
 
// C++ function to find inverse permutations
void inversePermutation(int arr[], int size) {
 
  // Loop to select Elements one by one
  for (int i = 0; i < size; i++) {
 
    // Loop to print position of element
    // where we find an element
    for (int j = 0; j < size; j++) {
 
      // checking the element in increasing order
      if (arr[j] == i + 1) {
 
        // print position of element where
        // element is in inverse permutation
        cout << j + 1 << " ";
        break;
      }
    }
  }
}
 
// Driver program to test above function
int main() {
  int arr[] = {2, 3, 4, 5, 1};
  int size = sizeof(arr) / sizeof(arr[0]);
  inversePermutation(arr, size);
  return 0;
}


Java




// Naive java Program to find inverse permutation.
import java.io.*;
 
class GFG {
 
    // java function to find inverse permutations
    static void inversePermutation(int arr[], int size)
    {
        int i ,j;
        // Loop to select Elements one by one
        for ( i = 0; i < size; i++)
        {
         
            // Loop to print position of element
            // where we find an element
            for ( j = 0; j < size; j++)
            {
         
                // checking the element in
                // increasing order
                if (arr[j] == i + 1)
                {
                    // print position of element
                    // where element is in inverse
                    // permutation
                    System.out.print( j + 1 + " ");
                    break;
                }
            }
        }
    }
     
    // Driver program to test above function
     
     
    public static void main (String[] args)
    {
        int arr[] = {2, 3, 4, 5, 1};
        int size = arr.length;
        inversePermutation(arr, size);
         
    }
}
 
// This code is contributed by vt_m


Python3




# Naive Python3 Program to
# find inverse permutation.
 
# Function to find inverse permutations
def inversePermutation(arr, size):
 
    # Loop to select Elements one by one
    for i in range(0, size):
 
        # Loop to print position of element
        # where we find an element
        for j in range(0, size):
 
        # checking the element in increasing order
            if (arr[j] == i + 1):
 
                # print position of element where
                # element is in inverse permutation
                print(j + 1, end = " ")
                break
 
# Driver Code
arr = [2, 3, 4, 5, 1]
size = len(arr)
 
inversePermutation(arr, size)
 
#This code is contributed by Smitha Dinesh Semwal


C#




// Naive C# Program to find inverse permutation.
using System;
 
class GFG {
 
    // java function to find inverse permutations
    static void inversePermutation(int []arr, int size)
    {
        int i ,j;
        // Loop to select Elements one by one
        for ( i = 0; i < size; i++)
        {
         
            // Loop to print position of element
            // where we find an element
            for ( j = 0; j < size; j++)
            {
         
                // checking the element in
                // increasing order
                if (arr[j] == i + 1)
                {
                    // print position of element
                    // where element is in inverse
                    // permutation
                    Console.Write( j + 1 + " ");
                    break;
                }
            }
        }
    }
     
    // Driver program to test above function
     
     
    public static void Main ()
    {
        int []arr = {2, 3, 4, 5, 1};
        int size = arr.Length;
        inversePermutation(arr, size);
         
    }
}
 
// This code is contributed by vt_m


PHP




<?php
// Naive PHP Program to
// find inverse permutation.
 
// Function to find
// inverse permutations
function inversePermutation($arr, $size)
{
for ( $i = 0; $i < $size; $i++)
{
 
    // Loop to print position of element
    // where we find an element
    for ($j = 0; $j < $size; $j++)
    {
 
    // checking the element
    // in increasing order
    if ($arr[$j] == $i + 1)
    {
 
        // print position of element
        // where element is in
        // inverse permutation
        echo $j + 1 , " ";
        break;
    }
    }
}
}
 
// Driver Code
$arr = array(2, 3, 4, 5, 1);
$size = sizeof($arr);
inversePermutation($arr, $size);
 
// This code is contributed by aj_36
?>


Javascript




<script>
 
// Naive JavaScript program to find inverse permutation.
 
// JavaScript function to find inverse permutations
    function inversePermutation(arr, size)
    {
        let i ,j;
         
        // Loop to select Elements one by one
        for ( i = 0; i < size; i++)
        {
           
            // Loop to print position of element
            // where we find an element
            for ( j = 0; j < size; j++)
            {
           
                // checking the element in
                // increasing order
                if (arr[j] == i + 1)
                {
                    // print position of element
                    // where element is in inverse
                    // permutation
                    document.write( j + 1 + " ");
                    break;
                }
            }
        }
    }
  
// Driver code
 
        let arr = [2, 3, 4, 5, 1];
        let size = arr.length;
        inversePermutation(arr, size);
 
</script>


Output

5 1 2 3 4 

Time Complexity: O(n*n)
Auxiliary Space: O(1)

Method 2: The idea is to use another array to store index and element mappings 

Implementation:

C++




// Efficient CPP Program to find inverse permutation.
#include <bits/stdc++.h>
using namespace std;
 
// C++ function to find inverse permutations
void inversePermutation(int arr[], int size) {
 
  // to store element to index mappings
  int arr2[size];
 
  // Inserting position at their
  // respective element in second array
  for (int i = 0; i < size; i++)
    arr2[arr[i] - 1] = i + 1;
 
  for (int i = 0; i < size; i++)
    cout << arr2[i] << " "
}
 
// Driver program to test above function
int main() {
  int arr[] = {2, 3, 4, 5, 1};
  int size = sizeof(arr) / sizeof(arr[0]);
  inversePermutation(arr, size);
  return 0;
}
 
// The code is contributed by Nidhi goel.


Java




// Efficient Java Program to find
// inverse permutation.
import java.io.*;
 
class GFG {
     
// function to find inverse permutations
static void inversePermutation(int arr[], int size) {
 
    // to store element to index mappings
    int arr2[] = new int[size];
 
    // Inserting position at their
    // respective element in second array
    for (int i = 0; i < size; i++)
    arr2[arr[i] - 1] = i + 1;
 
    for (int i = 0; i < size; i++)
    System.out.print(arr2[i] + " ");
}
 
// Driver program to test above function
public static void main(String args[]) {
    int arr[] = {2, 3, 4, 5, 1};
    int size = arr.length;
    inversePermutation(arr, size);
}
}
 
// This code is contributed by Nikita Tiwari.


Python3




# Efficient Python 3 Program to find
# inverse permutation.
 
# function to find inverse permutations
def inversePermutation(arr, size) :
 
    # To store element to index mappings
    arr2 = [0] *(size)
     
    # Inserting position at their
    # respective element in second array
    for i in range(0, size) :
        arr2[arr[i] - 1] = i + 1
     
    for i in range(0, size) :
        print( arr2[i], end = " ")
     
# Driver program
arr = [2, 3, 4, 5, 1]
size = len(arr)
 
inversePermutation(arr, size)
 
# This code is contributed by Nikita Tiwari.


C#




// Efficient C# Program to find
// inverse permutation.
using System;
 
class GFG {
     
// function to find inverse permutations
static void inversePermutation(int []arr, int size) {
 
    // to store element to index mappings
    int []arr2 = new int[size];
 
    // Inserting position at their
    // respective element in second array
    for (int i = 0; i < size; i++)
    arr2[arr[i] - 1] = i + 1;
 
    for (int i = 0; i < size; i++)
    Console.Write(arr2[i] + " ");
}
 
// Driver program to test above function
public static void Main() {
    int []arr = {2, 3, 4, 5, 1};
    int size = arr.Length;
    inversePermutation(arr, size);
}
}
 
// This code is contributed by vt_m.


Javascript




// function to find inverse permutations
function inversePermutation(arr, size) {
 
    // to store element to index mappings
    let arr2 = [];
 
    // Inserting position at their
    // respective element in second array
    for (let i = 0; i < size; i++)
    arr2[arr[i] - 1] = i + 1;
 
    for (let i = 0; i < size; i++)
    console.log(arr2[i] + " ");
}
 
    // Driver program to test above function
    let arr = [2, 3, 4, 5, 1];
    let size = arr.length;
    inversePermutation(arr, size);
     
    // This code is contributed by aadityaburujwale.


Output

5 1 2 3 4 

Time Complexity: O(n)
Auxiliary Space: O(n)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 02 Mar, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials