# Inverse Permutation

• Difficulty Level : Easy
• Last Updated : 27 May, 2021

Given an array of size n of integers in range from 1 to n, we need to find the inverse permutation of that array.
An inverse permutation is a permutation which you will get by inserting position of an element at the position specified by the element value in the array. For better understanding, consider the following example:
Suppose we found element 4 at position 3 in an array, then in reverse permutation, we insert 3 (position of element 4 in the array) in position 4 (element value).
Basically, An inverse permutation is a permutation in which each number and the number of the place which it occupies is exchanged.
The array should contain element from 1 to array_size.
Example 1 :

```Input  = {1, 4, 3, 2}
Output = {1, 4, 3, 2}```

In this, For element 1 we insert position of 1 from arr1 i.e 1 at position 1 in arr2. For element 4 in arr1, we insert 2 from arr1 at position 4 in arr2. Similarly, for element 2 in arr1, we insert position of 2 i.e 4 in arr2.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

```Example 2 :
Input  = {2, 3, 4, 5, 1}
Output = {5, 1, 2, 3, 4}```

In this example, for element 2 we insert position of 2 from arr1 in arr2 at position 2. similarly, we find the inverse permutation of other elements.
Consider an array arr having elements 1 to n.
Method 1 :
In this method, we take element one by one and check elements in increasing order and print the position of the element where we find that element.

## C++

 `// Naive CPP Program to find inverse permutation.``#include ``using` `namespace` `std;` `// C++ function to find inverse permutations``void` `inversePermutation(``int` `arr[], ``int` `size) {` `  ``// Loop to select Elements one by one``  ``for` `(``int` `i = 0; i < size; i++) {` `    ``// Loop to print position of element``    ``// where we find an element``    ``for` `(``int` `j = 0; j < size; j++) {` `      ``// checking the element in increasing order``      ``if` `(arr[j] == i + 1) {` `        ``// print position of element where``        ``// element is in inverse permutation``        ``cout << j + 1 << ``" "``;``        ``break``;``      ``}``    ``}``  ``}``}` `// Driver program to test above function``int` `main() {``  ``int` `arr[] = {2, 3, 4, 5, 1};``  ``int` `size = ``sizeof``(arr) / ``sizeof``(arr);``  ``inversePermutation(arr, size);``  ``return` `0;``}`

## Java

 `// Naive java Program to find inverse permutation.``import` `java.io.*;` `class` `GFG {` `    ``// java function to find inverse permutations``    ``static` `void` `inversePermutation(``int` `arr[], ``int` `size)``    ``{``        ``int` `i ,j;``        ``// Loop to select Elements one by one``        ``for` `( i = ``0``; i < size; i++)``        ``{``        ` `            ``// Loop to print position of element``            ``// where we find an element``            ``for` `( j = ``0``; j < size; j++)``            ``{``        ` `                ``// checking the element in``                ``// increasing order``                ``if` `(arr[j] == i + ``1``)``                ``{``                    ``// print position of element``                    ``// where element is in inverse``                    ``// permutation``                    ``System.out.print( j + ``1` `+ ``" "``);``                    ``break``;``                ``}``            ``}``        ``}``    ``}``    ` `    ``// Driver program to test above function``    ` `    ` `    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `arr[] = {``2``, ``3``, ``4``, ``5``, ``1``};``        ``int` `size = arr.length;``        ``inversePermutation(arr, size);``        ` `    ``}``}` `// This code is contributed by vt_m`

## Python3

 `# Naive Python3 Program to``# find inverse permutation.` `# Function to find inverse permutations``def` `inversePermutation(arr, size):` `    ``# Loop to select Elements one by one``    ``for` `i ``in` `range``(``0``, size):` `        ``# Loop to print position of element``        ``# where we find an element``        ``for` `j ``in` `range``(``0``, size):` `        ``# checking the element in increasing order``            ``if` `(arr[j] ``=``=` `i ``+` `1``):` `                ``# print position of element where``                ``# element is in inverse permutation``                ``print``(j ``+` `1``, end ``=` `" "``)``                ``break` `# Driver Code``arr ``=` `[``2``, ``3``, ``4``, ``5``, ``1``]``size ``=` `len``(arr)` `inversePermutation(arr, size)` `#This code is contributed by Smitha Dinesh Semwal`

## C#

 `// Naive C# Program to find inverse permutation.``using` `System;` `class` `GFG {` `    ``// java function to find inverse permutations``    ``static` `void` `inversePermutation(``int` `[]arr, ``int` `size)``    ``{``        ``int` `i ,j;``        ``// Loop to select Elements one by one``        ``for` `( i = 0; i < size; i++)``        ``{``        ` `            ``// Loop to print position of element``            ``// where we find an element``            ``for` `( j = 0; j < size; j++)``            ``{``        ` `                ``// checking the element in``                ``// increasing order``                ``if` `(arr[j] == i + 1)``                ``{``                    ``// print position of element``                    ``// where element is in inverse``                    ``// permutation``                    ``Console.Write( j + 1 + ``" "``);``                    ``break``;``                ``}``            ``}``        ``}``    ``}``    ` `    ``// Driver program to test above function``    ` `    ` `    ``public` `static` `void` `Main ()``    ``{``        ``int` `[]arr = {2, 3, 4, 5, 1};``        ``int` `size = arr.Length;``        ``inversePermutation(arr, size);``        ` `    ``}``}` `// This code is contributed by vt_m`

## PHP

 ``

## Javascript

 ``

Output :

` 5 1 2 3 4`

Method 2 :
The idea is to to use another array to store index and element mappings

## C++

 `// Efficient CPP Program to find inverse permutation.``#include ``using` `namespace` `std;` `// C++ function to find inverse permutations``void` `inversePermutation(``int` `arr[], ``int` `size) {` `  ``// to store element to index mappings``  ``int` `arr2[size];` `  ``// Inserting position at their``  ``// respective element in second array``  ``for` `(``int` `i = 0; i < size; i++)``    ``arr2[arr[i] - 1] = i + 1;` `  ``for` `(``int` `i = 0; i < size; i++)``    ``cout << arr2[i] << ``" "``; ``}` `// Driver program to test above function``int` `main() {``  ``int` `arr[] = {2, 3, 4, 5, 1};``  ``int` `size = ``sizeof``(arr) / ``sizeof``(arr);``  ``inversePermutation(arr, size);``  ``return` `0;``}`

## Java

 `// Efficient Java Program to find``// inverse permutation.``import` `java.io.*;` `class` `GFG {``    ` `// function to find inverse permutations``static` `void` `inversePermutation(``int` `arr[], ``int` `size) {` `    ``// to store element to index mappings``    ``int` `arr2[] = ``new` `int``[size];` `    ``// Inserting position at their``    ``// respective element in second array``    ``for` `(``int` `i = ``0``; i < size; i++)``    ``arr2[arr[i] - ``1``] = i + ``1``;` `    ``for` `(``int` `i = ``0``; i < size; i++)``    ``System.out.print(arr2[i] + ``" "``);``}` `// Driver program to test above function``public` `static` `void` `main(String args[]) {``    ``int` `arr[] = {``2``, ``3``, ``4``, ``5``, ``1``};``    ``int` `size = arr.length;``    ``inversePermutation(arr, size);``}``}` `// This code is contributed by Nikita Tiwari.`

## Python3

 `# Efficient Python 3 Program to find``# inverse permutation.` `# function to find inverse permutations``def` `inversePermutation(arr, size) :` `    ``# To store element to index mappings``    ``arr2 ``=` `[``0``] ``*``(size)``    ` `    ``# Inserting position at their``    ``# respective element in second array``    ``for` `i ``in` `range``(``0``, size) :``        ``arr2[arr[i] ``-` `1``] ``=` `i ``+` `1``    ` `    ``for` `i ``in` `range``(``0``, size) :``        ``print``( arr2[i], end ``=` `" "``)``    ` `# Driver program``arr ``=` `[``2``, ``3``, ``4``, ``5``, ``1``]``size ``=` `len``(arr)` `inversePermutation(arr, size)` `# This code is contributed by Nikita Tiwari.`

## C#

 `// Efficient C# Program to find``// inverse permutation.``using` `System;` `class` `GFG {``    ` `// function to find inverse permutations``static` `void` `inversePermutation(``int` `[]arr, ``int` `size) {` `    ``// to store element to index mappings``    ``int` `[]arr2 = ``new` `int``[size];` `    ``// Inserting position at their``    ``// respective element in second array``    ``for` `(``int` `i = 0; i < size; i++)``    ``arr2[arr[i] - 1] = i + 1;` `    ``for` `(``int` `i = 0; i < size; i++)``    ``Console.Write(arr2[i] + ``" "``);``}` `// Driver program to test above function``public` `static` `void` `Main() {``    ``int` `[]arr = {2, 3, 4, 5, 1};``    ``int` `size = arr.Length;``    ``inversePermutation(arr, size);``}``}` `// This code is contributed by vt_m.`
`Output : 5 1 2 3 4`

My Personal Notes arrow_drop_up