Skip to content
Related Articles

Related Articles

Improve Article

Inverse Gamma Distribution in Python

  • Last Updated : 02 Aug, 2019
Geek Week

Inverse Gamma distribution is a continuous probability distribution with two parameters on the positive real line. It is the reciprocate distribution of a variable distributed according to the gamma distribution. It is very useful in Bayesian statistics as the marginal distribution for the unknown variance of a normal distribution. It is used for considering the alternate parameter for the normal distribution in terms of the precision which is actually the reciprocal of the variance.

scipy.stats.invgamma() :

It is an inverted gamma continuous random variable. It is an instance of the rv_continuous class. It inherits from the collection of generic methods and combines them with the complete specification of distribution.

Code #1 : Creating inverted gamma continuous random variable






from scipy.stats import invgamma  
    
numargs = invgamma.numargs
[a] = [0.3] * numargs
rv = invgamma (a)
    
print ("RV : \n", rv) 

Output :

RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x00000230B0B28748

 
Code #2 : Inverse Gamma continuous variates and probability distribution




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
     
# Random Variates
R = invgamma.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
    
# PDF
R = invgamma .pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

Output :

Random Variates : 
 [4.18816252e+00 2.02807957e+03 8.37914946e+01 1.94368997e+00
 3.78345091e+00 1.00496176e+06 3.42396458e+03 3.45520522e+00
 2.81037118e+00 1.72359706e+03]

Probability Distribution : 
 [0.0012104  0.0157619  0.03512042 0.05975504 0.09007126 0.12639944
 0.16898506 0.21798098 0.27344182 0.33532072]


 
Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
    
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
    
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
    
x = np.linspace(0, 5, 100)
    
# Varying positional arguments
y1 = invgamma .pdf(x, 1, 3)
y2 = invgamma .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :