# Increasing sequence with given GCD

Given two integers **n** and **g**, the task is to generate an **increasing sequence** of **n** integers such that:

- The gcd of all the elements of the sequence is
**g**. - And, the sum of all the elements is minimum among all possible sequences.

**Examples:**

Input:n = 6, g = 5

Output:5 10 15 20 25 30

Input:n = 5, g = 3

Output:3 6 9 12 15

**Approach:** The sum of the sequence will be minimum when the sequence will consist of the elements:

**g, 2 * g, 3 * g, 4 * g, ….., n * g**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to print the required sequence ` `void` `generateSequence(` `int` `n, ` `int` `g) ` `{ ` ` ` `for` `(` `int` `i = 1; i <= n; i++) ` ` ` `cout << i * g << ` `" "` `; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` `int` `n = 6, g = 5; ` ` ` `generateSequence(n, g); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of the approach ` `class` `GFG ` `{ ` ` ` ` ` `// Function to print the required sequence ` ` ` `static` `void` `generateSequence(` `int` `n, ` `int` `g) ` ` ` `{ ` ` ` `for` `(` `int` `i = ` `1` `; i <= n; i++) ` ` ` `System.out.print(i * g + ` `" "` `);; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `main(String []args) ` ` ` `{ ` ` ` `int` `n = ` `6` `, g = ` `5` `; ` ` ` `generateSequence(n, g); ` ` ` ` ` `} ` `} ` ` ` `// This code is contributed by Rituraj Jain ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach ` ` ` `# Function to print the required sequence ` `def` `generateSequence(n, g): ` ` ` ` ` `for` `i ` `in` `range` `(` `1` `, n ` `+` `1` `): ` ` ` `print` `(i ` `*` `g, end ` `=` `" "` `) ` ` ` `# Driver Code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` ` ` `n, g ` `=` `6` `, ` `5` ` ` `generateSequence(n, g) ` ` ` `# This code is contributed by Rituraj Jain ` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of the approach ` `using` `System ; ` ` ` `class` `GFG ` `{ ` ` ` ` ` `// Function to print the required sequence ` ` ` `static` `void` `generateSequence(` `int` `n, ` `int` `g) ` ` ` `{ ` ` ` `for` `(` `int` `i = 1; i <= n; i++) ` ` ` `Console.Write(i * g + ` `" "` `); ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `int` `n = 6, g = 5; ` ` ` `generateSequence(n, g); ` ` ` `} ` `} ` ` ` `// This code is contributed by Ryuga ` |

*chevron_right*

*filter_none*

## PHP

**Output:**

5 10 15 20 25 30

## Recommended Posts:

- Count the number of non-increasing subarrays
- Count permutations that are first decreasing then increasing.
- Print all non-increasing sequences of sum equal to a given number x
- Sum of array elements that is first continuously increasing then decreasing
- Number of Permutations such that no Three Terms forms Increasing Subsequence
- Print all increasing sequences of length k from first n natural numbers
- Minimum value of X to make all array elements equal by either decreasing or increasing by X
- Generate k digit numbers with digits in strictly increasing order
- Length of the longest increasing subsequence such that no two adjacent elements are coprime
- Minimum increment operations to make the array in increasing order
- Sum of the sequence 2, 22, 222, .........
- Aronson's Sequence
- Gould's Sequence
- Juggler Sequence
- Padovan Sequence

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.