Related Articles

Related Articles

Implementation of Wilson Primality test
  • Difficulty Level : Medium
  • Last Updated : 18 Dec, 2020

Given a number N, the task is to check if it is prime or not using Wilson Primality Test. Print ‘1’ isf the number is prime, else print ‘0’.
Wilson’s theorem states that a natural number p > 1 is a prime number if and only if

    (p - 1) ! ≡  -1   mod p 
OR  (p - 1) ! ≡  (p-1) mod p

Examples: 

Input: p = 5
Output: Yes
(p - 1)! = 24
24 % 5  = 4

Input: p = 7
Output: Yes
(p-1)! = 6! = 720
720 % 7  = 6

Below is the implementation of Wilson Primality Test  

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to check if a number is
// prime or not using Wilson Primality Test
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the factorial
long fact(const int& p)
{
    if (p <= 1)
        return 1;
    return p * fact(p - 1);
}
 
// Function to check if the
// number is prime or not
bool isPrime(const int& p)
{
    if (p == 4)
        return false;
    return bool(fact(p >> 1) % p);
}
 
// Driver code
int main()
{
    cout << isPrime(127);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to check if a number is 
// prime or not using Wilson Primality Test
public class Main
{
    // Function to calculate the factorial
    public static long fact(int p)
    {
        if (p <= 1)
            return 1;
        return p * fact(p - 1);
    }
       
    // Function to check if the
    // number is prime or not
    public static long isPrime(int p)
    {
        if (p == 4)
            return 0;
        return (fact(p >> 1) % p);
    }
 
    public static void main(String[] args) {
        if(isPrime(127) == 0)
        {
            System.out.println(0);
        }
        else{
            System.out.println(1);
        }
    }
}
 
// This code is contributed by divyesh072019

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to check if a number is
# prime or not using Wilson Primality Test
 
# Function to calculate the factorial
def fact(p):
     
    if (p <= 1):
        return 1
 
    return p * fact(p - 1)
 
# Function to check if the
# number is prime or not
def isPrime(p):
     
    if (p == 4):
        return 0
         
    return (fact(p >> 1) % p)
 
# Driver code
if (isPrime(127) == 0):
    print(0)
else:
    print(1)
 
# This code is contributed by rag2127

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to check if a number is 
// prime or not using Wilson Primality Test
using System;
class GFG {
     
    // Function to calculate the factorial
    static long fact(int p)
    {
        if (p <= 1)
            return 1;
        return p * fact(p - 1);
    }
        
    // Function to check if the
    // number is prime or not
    static long isPrime(int p)
    {
        if (p == 4)
            return 0;
        return (fact(p >> 1) % p);
    }
     
  static void Main() {
    if(isPrime(127) == 0)
    {
        Console.WriteLine(0);
    }
    else{
        Console.WriteLine(1);
    }
  }
}
 
// This code is contributed by divyeshrabadiya07

chevron_right


Output: 

1

 

How does it work? 

  1. We can quickly check result for p = 2 or p = 3.
  2. For p > 3: If p is composite, then its positive divisors are among the integers 1, 2, 3, 4, … , p-1 and it is clear that gcd((p-1)!,p) > 1, so we can not have (p-1)! = -1 (mod p).
  3. Now let us see how it is exactly -1 when p is a prime. If p is a prime, then all numbers in [1, p-1] are relatively prime to p. And for every number x in range [2, p-2], there must exist a pair y such that (x*y)%p = 1. So
    [1 * 2 * 3 * ... (p-1)]%p 
 =  [1 * 1 * 1 ... (p-1)] // Group all x and y in [2..p-2] 
                          // such that (x*y)%p = 1
 = (p-1)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :