Skip to content
Related Articles

Related Articles

How to skip rows while reading csv file using Pandas?
  • Last Updated : 10 Jul, 2020

Python is a good language for doing data analysis because of the amazing ecosystem of data-centric python packages. Pandas package is one of them and makes importing and analyzing data so much easier.

Here, we will discuss how to skip rows while reading csv file. We will use read_csv() method of Pandas library for this task.

Syntax: pd.read_csv(filepath_or_buffer, sep=’, ‘, delimiter=None, header=’infer’, names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression=’infer’, thousands=None, decimal=b’.’, lineterminator=None, quotechar='”‘, quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

Some useful parameters are given below :

Parameter Use
filepath_or_buffer URL or Dir location of file
sep Stands for seperator, default is ‘, ‘ as in csv(comma seperated values)
index_col This parameter is use to make passed column as index instead of 0, 1, 2, 3…r
header This parameter is use to make passed row/s[int/int list] as header
use_cols This parameter is Only uses the passed col[string list] to make data frame
squeeze If True and only one column is passed then returns pandas series
skiprows This parameter is use to skip passed rows in new data frame
skipfooter This parameter is use to skip Number of lines at bottom of file

For downloading the student.csv file Click Here



Method 1: Skipping N rows from the starting while reading a csv file.
Code:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Pandas library
import pandas as pd
  
# Skiping 2 rows from start in csv
# and initialize it to a  dataframe
df = pd.read_csv("students.csv"
                  skiprows = 2)
  
# Show the dataframe
df

chevron_right


Output :
csv file content

Method 2: Skipping rows at specific positions while reading a csv file.
Code:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Pandas library
import pandas as pd
  
# Skiping rows at specific position
df = pd.read_csv("students.csv",
                  skiprows = [0, 2, 5])
  
# Show the dataframe
df

chevron_right


Output :
csv file content_6

Method 3: Skipping N rows from the starting except column names while reading a csv file.
Code:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Pandas library
import pandas as pd
  
# Skiping 2 rows from start 
# except the coulmn names
df = pd.read_csv("students.csv"
                 skiprows = [i for i in range(1, 3) ])
  
# Show the dataframe
df

chevron_right


Output :
csv file content_5

Method 4: Skip rows based on a condition while reading a csv file.
Code:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Pandas library
import pandas as pd
  
# function for checking and 
# skipping every 3rd line 
def logic(index):
  
    if index % 3 == 0:
        return True
  
    return False
  
# Skiping rows based on a condition
df = pd.read_csv("students.csv"
                 skiprows = lambda x: logic(x) )
  
# Show the dataframe
df

chevron_right


Output :
csv file content_4

Method 5: Skip N rows from the end while reading a csv file.
Code:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing Pandas library
import pandas as pd
  
# Skiping 2 rows from end
df = pd.read_csv("students.csv"
                  skipfooter = 5
                  engine = 'python')
  
# Show the dataframe
df

chevron_right


Output :
csv file content_3

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :