It is not always possible to get the dataset in CSV format. So, Pandas provides us the functions to convert datasets in other formats to the Data frame. An excel file has a ‘.xlsx’ format.
Before we get started, we need to install a few libraries.
pip install pandas
pip install xlrd
For importing an Excel file into Python using Pandas we have to use pandas.read_excel() function.
Syntax: pandas.read_excel(io, sheet_name=0, header=0, names=None,….)
Return: DataFrame or dict of DataFrames.
Let’s suppose the Excel file looks like this:

Now, we can dive into the code.
Example 1: Read an Excel file.
Python3
import pandas as pd
df = pd.read_excel( "sample.xlsx" )
print (df)
|
Output:

Example 2: To select a particular column, we can pass a parameter “index_col“.
Python3
import pandas as pd
df = pd.read_excel( "sample.xlsx" ,
index_col = 0 )
print (df)
|
Output:

Example 3: In case you don’t prefer the initial heading of the columns, you can change it to indexes using the parameter “header”.
Python3
import pandas as pd
df = pd.read_excel( 'sample.xlsx' ,
header = None )
print (df)
|
Output:

Example 4: If you want to change the data type of a particular column you can do it using the parameter “dtype“.
Python3
import pandas as pd
df = pd.read_excel( 'sample.xlsx' ,
dtype = { "Products" : str ,
"Price" : float })
print (df)
|
Output:

Example 5: In case you have unknown values, then you can handle it using the parameter “na_values“. It will convert the mentioned unknown values into “NaN”
Python3
import pandas as pd
df = pd.read_excel( 'sample.xlsx' ,
na_values = [ 'item1' ,
'item2' ])
print (df)
|
Output:
