Given a number n, the task is to find the nth Hendecagonal number.
A Hendecagonal number is a figurate number that extends the concept of triangular and square numbers to the decagon (Eleven -sided polygon). The nth hendecagonal number counts the number of dots in a pattern of n nested decagons, all sharing a common corner, where the ith hendecagon in the pattern has sides made of i dots spaced one unit apart from each other.
Examples:
Input : 2
Output :11
Input :6
Output :141

Formula for nth hendecagonal number :

C++
#include <bits/stdc++.h>
using namespace std;
int hendecagonal_num( int n)
{
return (9 * n * n - 7 * n) / 2;
}
int main()
{
int n = 3;
cout << n << "rd Hendecagonal number: " ;
cout << hendecagonal_num(n);
cout << endl;
n = 10;
cout << n << "th Hendecagonal number: " ;
cout << hendecagonal_num(n);
return 0;
}
|
C
#include <stdio.h>
int hendecagonal_num( int n)
{
return (9 * n * n - 7 * n) / 2;
}
int main()
{
int n = 3;
printf ( "%drd Hendecagonal number: " ,n);
printf ( "%d\n" ,hendecagonal_num(n));
n = 10;
printf ( "%dth Hendecagonal number: " ,n);
printf ( "%d\n" ,hendecagonal_num(n));
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int hendecagonal_num( int n)
{
return ( 9 * n * n -
7 * n) / 2 ;
}
public static void main (String[] args)
{
int n = 3 ;
System.out.print(n + "rd Hendecagonal " +
"number: " );
System.out.println(hendecagonal_num(n));
n = 10 ;
System.out.print(n + "th Hendecagonal " +
"number: " );
System.out.println(hendecagonal_num(n));
}
}
|
Python3
def hendecagonal_num(n) :
return ( 9 * n * n -
7 * n) / / 2
if __name__ = = '__main__' :
n = 3
print (n, "rd Hendecagonal number : " ,
hendecagonal_num(n))
n = 10
print (n, "th Hendecagonal number : " ,
hendecagonal_num(n))
|
C#
using System;
class GFG
{
static int hendecagonal_num( int n)
{
return (9 * n * n - 7 * n) / 2;
}
static public void Main ()
{
int n = 3;
Console.Write(n +
"rd Hendecagonal number: " );
Console.WriteLine( hendecagonal_num(n));
n = 10;
Console.Write(n +
"th Hendecagonal number: " );
Console.WriteLine( hendecagonal_num(n));
}
}
|
PHP
<?php
function hendecagonal_num( $n )
{
return (9 * $n * $n - 7 * $n ) / 2;
}
$n = 3;
echo $n , "th Hendecagonal number: " ;
echo hendecagonal_num( $n );
echo "\n" ;
$n = 10;
echo $n , "th Hendecagonal number: " ;
echo hendecagonal_num( $n );
?>
|
Javascript
<script>
function hendecagonal_num(n)
{
return (9 * n * n - 7 * n) / 2;
}
let n = 3;
document.write(n + "rd Hendecagonal number: " );
document.write(hendecagonal_num(n) + "</br>" );
n = 10;
document.write(n + "th Hendecagonal number: " );
document.write(hendecagonal_num(n));
</script>
|
Output :
3th Hendecagonal number: 30
10th Hendecagonal number: 415
Time Complexity: O(1)
Auxiliary Space: O(1)
Reference: https://en.wikipedia.org/wiki/Polygonal_number
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 May, 2022
Like Article
Save Article