Skip to content
Related Articles

Related Articles

Improve Article
Hammered distance between N points in a 2-D plane
  • Difficulty Level : Easy
  • Last Updated : 21 Jun, 2021

Given n number of point in 2-d plane followed by Xi, Yi describing n points. The task is to calculate the hammered distance of n points. 
Note: Hammered distance is the sum of the square of the shortest distance between every pair of the point.

Examples: 

Input: n = 3
0 1
0 0
1 0
Output: 4

Input: n = 4
1 0
2 0
3 0
4 0
Output: 20

Basic Approach:As we have to find out sum of square of shortest distance among all the pairs.So, we can take every possible pair and calculate the sum of square of distance.  

// Pseudo code to find hammered-distance using above approach.
//this will store hammered distance
Distance=0
for(int i=0;i<n;i++)
{
    for(int j=i+1;j<n;j++)
    {
         //shortest distance between point i and j.
         Distance+=(x[i]-x[j])^2+(y[i]-y[j])^2
     }
}

Its time complexity will be O(n^2).
Efficient Approach: This problem can be solved in time complexity of O(N).  

    \begin{document} $$Sum=\sum_{i=1}^{n} \sum_{j=1}^{i-1} \left(X_j-X_i \right)^2+\left(Y_j-Y_i \right)^2$$ We can solve separtely for x and y coordinates. For X: $$Sum_x=\sum_{i=1}^{n} \sum_{j=1}^{i-1} \left(X_j-X_i \right)^2$$ $$Sum_x= \sum_{i=1}^{n} \sum_{j=1}^{i-1} \left(X_j^2+X_i^2 -2 \cdot X_i \cdot X_j \right)$$ Now expand the summation part, We can write this equation as- $$Sum_x=\sum_{i=1}^{n} \left( (i-1)*X_i^2+\sum_{j=1}^{i-1}X_j^2-2 \cdot X_i\cdot \sum_{j=1}^{i-1} X_j \right)$$ $\sum_{j=1}^{i-1}X_j$ This is commulative sum of square of points upto i-1.So, this can be calculated in linear time. Similarly, This can also be calculated in linear time. $2 \cdot X_i\cdot \sum_{j=1}^{i-1} X_j$ \end{document}



 

Below is the implementation of above approach:

 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Function calculate cummalative sum
// of x, y, x^2, y^2 coordinates.
void cumm(vector<ll>& x, vector<ll>& y,
        vector<ll>& cummx, vector<ll>& cummy,
        vector<ll>& cummx2, vector<ll>& cummy2, ll n)
{
    for (int i = 1; i <= n; i++) {
        cummx[i] = cummx[i - 1] + x[i];
        cummy[i] = cummy[i - 1] + y[i];
        cummx2[i] = cummx2[i - 1] + x[i] * x[i];
        cummy2[i] = cummy2[i - 1] + y[i] * y[i];
    }
}
 
// Function ot calculate the hammered distance
int calHammeredDistance(int n, vector<ll>& x, vector<ll>& y)
{
    // cummx contains cummulative sum of x
    // cummy contains cummulative sum of y
    vector<ll> cummx(n + 1, 0), cummy(n + 1, 0);
 
    // cummx2 contains cummulative sum of x^2
    // cummy2 contains cummulative sum of y^2
    vector<ll> cummx2(n + 1, 0), cummy2(n + 1, 0);
 
    // calculate cummalative of x
    //, y, x^2, y^2, because these terms
    // required in formula to reduce complexity.
 
    // this function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n);
 
    // hdx calculate hammer distance for x coordinate
    // hdy calculate hammer distance for y coordinate
    ll hdx = 0, hdy = 0;
 
    for (int i = 1; i <= n; i++) {
 
        // came from formula describe in explanation
        hdx += (i - 1) * x[i] * x[i] + cummx2[i - 1]
            - 2 * x[i] * cummx[i - 1];
 
        // came from formula describe in explanation
        hdy += (i - 1) * y[i] * y[i] + cummy2[i - 1]
            - 2 * y[i] * cummy[i - 1];
    }
 
    // total is the sum of both x and y.
    ll total = hdx + hdy;
    return total;
}
 
// Driver code
int main()
{
    // number of points
    int n = 3;
 
    // x contains the x coordinates
    // y contains the y coordinates
    //and converting the size to n+1
    vector<ll> x = {0, 0, 1, 0};
    vector<ll> y = {1, 0, 0, 0};
 
    cout << calHammeredDistance(n, x, y);
 
    return 0;
}

Java




// Java implementation of above approach
 
 
class GFG{
  
// Function calculate cummalative sum
// of x, y, x^2, y^2 coordinates.
static void cumm(int [] x, int [] y,
        int [] cummx, int [] cummy,
        int [] cummx2, int [] cummy2, int n)
{
    for (int i = 1; i <= n; i++) {
        cummx[i] = cummx[i - 1] + x[i];
        cummy[i] = cummy[i - 1] + y[i];
        cummx2[i] = cummx2[i - 1] + x[i] * x[i];
        cummy2[i] = cummy2[i - 1] + y[i] * y[i];
    }
}
  
// Function ot calculate the hammered distance
static int calHammeredDistance(int n, int [] x, int [] y)
{
    // cummx contains cummulative sum of x
    // cummy contains cummulative sum of y
    int []cummx = new int[n + 1];
    int []cummy = new int[n + 1];
  
    // cummx2 contains cummulative sum of x^2
    // cummy2 contains cummulative sum of y^2
    int []cummx2 = new int[n + 1];
    int []cummy2 = new int[n + 1];
  
    // calculate cummalative of x
    //, y, x^2, y^2, because these terms
    // required in formula to reduce complexity.
  
    // this function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n);
  
    // hdx calculate hammer distance for x coordinate
    // hdy calculate hammer distance for y coordinate
    int hdx = 0, hdy = 0;
  
    for (int i = 1; i <= n; i++) {
  
        // came from formula describe in explanation
        hdx += (i - 1) * x[i] * x[i] + cummx2[i - 1]
               - 2 * x[i] * cummx[i - 1];
  
        // came from formula describe in explanation
        hdy += (i - 1) * y[i] * y[i] + cummy2[i - 1]
               - 2 * y[i] * cummy[i - 1];
    }
  
    // total is the sum of both x and y.
    int total = hdx + hdy;
    return total;
}
  
// Driver code
public static void main(String[] args)
{
    // number of points
    int n = 3;
  
    // x contains the x coordinates
    // y contains the y coordinates
    int []x = new int[n + 1];
    int []y = new int[n + 1];
    x[2] = 1;
    y[0] = 1;
  
    System.out.print(calHammeredDistance(n, x, y));
  
}
}
 
// This code contributed by Rajput-Ji

Python3




# Python3 implementation of the
# above approach
 
# Function calculate cummalative sum
# of x, y, x^2, y^2 coordinates.
def cumm(x, y, cummx, cummy,
               cummx2, cummy2, n):
 
    for i in range(1, n+1):
        cummx[i] = cummx[i - 1] + x[i]
        cummy[i] = cummy[i - 1] + y[i]
        cummx2[i] = cummx2[i - 1] + x[i] * x[i]
        cummy2[i] = cummy2[i - 1] + y[i] * y[i]
 
# Function ot calculate the
# hammered distance
def calHammeredDistance(n, x, y):
 
    # cummx contains cummulative sum of x
    # cummy contains cummulative sum of y
    cummx = [0] * (n + 1)
    cummy = [0] * (n + 1)
 
    # cummx2 contains cummulative sum of x^2
    # cummy2 contains cummulative sum of y^2
    cummx2 = [0] * (n + 1)
    cummy2 = [0] * (n + 1)
 
    # calculate cumulative of x , y, x^2, y^2,
    # because these terms are required in the
    # formula to reduce complexity.
 
    # This function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n)
 
    # hdx calculate hammer distance for x coordinate
    # hdy calculate hammer distance for y coordinate
    hdx, hdy = 0, 0
 
    for i in range(1, n + 1):
 
        # came from formula describe in explanation
        hdx += ((i - 1) * x[i] * x[i] + cummx2[i - 1] -
                             2 * x[i] * cummx[i - 1])
 
        # came from formula describe in explanation
        hdy += ((i - 1) * y[i] * y[i] + cummy2[i - 1] -
                             2 * y[i] * cummy[i - 1])
     
    # total is the sum of both x and y.
    total = hdx + hdy
    return total
 
# Driver Code
if __name__ == "__main__":
 
    # number of points
    n = 3
 
    # x contains the x coordinates
    # y contains the y coordinates
    x = [0, 0, 1, 0]
    y = [1, 0, 0, 0]
 
    print(calHammeredDistance(n, x, y))
 
# This code is contributed by Rituraj Jain

C#




// C# implementation of above approach
using System;
 
class GFG{
   
// Function calculate cummalative sum
// of x, y, x^2, y^2 coordinates.
static void cumm(int [] x, int [] y,
        int [] cummx, int [] cummy,
        int [] cummx2, int [] cummy2, int n)
{
    for (int i = 1; i <= n; i++) {
        cummx[i] = cummx[i - 1] + x[i];
        cummy[i] = cummy[i - 1] + y[i];
        cummx2[i] = cummx2[i - 1] + x[i] * x[i];
        cummy2[i] = cummy2[i - 1] + y[i] * y[i];
    }
}
   
// Function ot calculate the hammered distance
static int calHammeredDistance(int n, int [] x, int [] y)
{
    // cummx contains cummulative sum of x
    // cummy contains cummulative sum of y
    int []cummx = new int[n + 1];
    int []cummy = new int[n + 1];
   
    // cummx2 contains cummulative sum of x^2
    // cummy2 contains cummulative sum of y^2
    int []cummx2 = new int[n + 1];
    int []cummy2 = new int[n + 1];
   
    // calculate cummulative of x
    //, y, x^2, y^2, because these terms
    // required in formula to reduce complexity.
   
    // this function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n);
   
    // hdx calculate hammer distance for x coordinate
    // hdy calculate hammer distance for y coordinate
    int hdx = 0, hdy = 0;
   
    for (int i = 1; i <= n; i++) {
   
        // came from formula describe in explanation
        hdx += (i - 1) * x[i] * x[i] + cummx2[i - 1]
               - 2 * x[i] * cummx[i - 1];
   
        // came from formula describe in explanation
        hdy += (i - 1) * y[i] * y[i] + cummy2[i - 1]
               - 2 * y[i] * cummy[i - 1];
    }
   
    // total is the sum of both x and y.
    int total = hdx + hdy;
    return total;
}
   
// Driver code
public static void Main(String[] args)
{
    // number of points
    int n = 3;
   
    // x contains the x coordinates
    // y contains the y coordinates
    int []x = new int[n + 1];
    int []y = new int[n + 1];
    x[2] = 1;
    y[0] = 1;
   
    Console.Write(calHammeredDistance(n, x, y)); 
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
      // JavaScript implementation of above approach
      // Function calculate cummalative sum
      // of x, y, x^2, y^2 coordinates.
      function cumm(x, y, cummx, cummy, cummx2, cummy2, n) {
        for (var i = 1; i <= n; i++) {
          cummx[i] = cummx[i - 1] + x[i];
          cummy[i] = cummy[i - 1] + y[i];
          cummx2[i] = cummx2[i - 1] + x[i] * x[i];
          cummy2[i] = cummy2[i - 1] + y[i] * y[i];
        }
      }
 
      // Function ot calculate the hammered distance
      function calHammeredDistance(n, x, y) {
        // cummx contains cummulative sum of x
        // cummy contains cummulative sum of y
        var cummy = new Array(n + 1).fill(0);
        var cummx = new Array(n + 1).fill(0);
 
        // cummx2 contains cummulative sum of x^2
        // cummy2 contains cummulative sum of y^2
        var cummx2 = new Array(n + 1).fill(0);
        var cummy2 = new Array(n + 1).fill(0);
 
        // calculate cummalative of x
        //, y, x^2, y^2, because these terms
        // required in formula to reduce complexity.
 
        // this function calculate all required terms.
        cumm(x, y, cummx, cummy, cummx2, cummy2, n);
 
        // hdx calculate hammer distance for x coordinate
        // hdy calculate hammer distance for y coordinate
        var hdx = 0,
          hdy = 0;
 
        for (var i = 1; i <= n; i++) {
          // came from formula describe in explanation
          hdx +=
            (i - 1) * x[i] * x[i] + cummx2[i - 1] - 2 * x[i] * cummx[i - 1];
 
          // came from formula describe in explanation
          hdy +=
            (i - 1) * y[i] * y[i] + cummy2[i - 1] - 2 * y[i] * cummy[i - 1];
        }
 
        // total is the sum of both x and y.
        var total = hdx + hdy;
        return total;
      }
 
      // Driver code
      // number of points
      var n = 3;
 
      // x contains the x coordinates
      // y contains the y coordinates
      var x = new Array(n + 1).fill(0);
      var y = new Array(n + 1).fill(0);
      x[2] = 1;
      y[0] = 1;
 
      document.write(calHammeredDistance(n, x, y));
    </script>
Output
2

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :