Group all co-prime numbers from 1 to N

Given an integer N, the task is to group numbers such that each group is mutually co-prime together with the total grouping is minimum.
Examples:

Input: N = 8 
Output: 
1 2 3 
4 5 
6 7 
8

Input: N = 5 
Output: 
1 2 3 
4 5

Approach: The key observation in this problem is two consecutive numbers are always co-prime. That is GCD(a, a+1) = 1. Another important observation is even numbers can’t be listed in one group. Because they will lead to the greatest common divisor of 2. Therefore, every consecutive even and odd numbers can be grouped into one group and 1 can be in any group because the greatest common divisor of numbers with 1 is always 1.

Below is the implementation of the above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to group 
// mutually coprime numbers into 
// one group with minimum group possible 
#include<bits/stdc++.h>
using namespace std;
  
// Function to group the mutually 
// co-prime numbers into one group 
void mutually_coprime(int n)
{
    if (n <= 3)
    {
          
        // Loop for the numbers less 
        // than the 4 
        for(int j = 1; j <= n; j++)
        {
            cout << j << " ";
        }
        cout << "\n";
    }
    else
    {
          
        // Integers 1, 2 and 3 can be 
        // grouped into one group 
        cout << "1 2 3\n";
          
        for(int j = 4; j < n; j += 2)
        {
              
            // Consecutive even and 
            // odd numbers 
            cout << j << " " << j + 1 << "\n";
        }
        if(n % 2 == 0)
            cout << n << "\n";
    }
}
  
// Driver Code         
int main()
{
    int n = 9;
      
    // Function call 
    mutually_coprime(n);
}
  
// This code is contributed by yatinagg

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to group
// mutually coprime numbers into 
// one group with minimum group possible
class GFG{
      
// Function to group the mutually
// co-prime numbers into one group
static void mutually_coprime(int n)
{
    if (n <= 3)
    {
          
        // Loop for the numbers less
        // than the 4
        for(int j = 1; j < n + 1; j++)
           System.out.print(j + " ");
        System.out.println();
    
    else
    {
          
        // Integers 1, 2 and 3 can be
        // grouped into one group
        System.out.println("1 2 3");
        for(int j = 4; j < n; j += 2)
        {
  
           // Consecutive even and
           // odd numbers
           System.out.println(j + " " + (j + 1));
           if (n % 2 == 0)
           System.out.println(n);
        }
    }
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 9;
  
    // Function Call
    mutually_coprime(n);
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to group
# mutually coprime numbers into 
# one group with minimum group possible
  
# Function to group the mutually
# co-prime numbers into one group
def mutually_coprime (n):    
    if ( n <= 3):
        # Loop for the numbers less 
        # than the 4 
        for j in range (1, n + 1):
            print (j, end =" ")
        print ()
    else:
        # Integers 1, 2 and 3 can be 
        # grouped into one group
        print (1, 2, 3)
        for j in range ( 4, n, 2 ):
              
            # Consecutive even and 
            # odd numbers
            print (j, ( j + 1 ))
        if(n % 2 == 0):         
            print (n)
  
# Driver Code            
if __name__ == "__main__":
    n = 9
      
    # Function Call
    mutually_coprime (n)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to group
// mutually coprime numbers into 
// one group with minimum group possible
using System;
  
class GFG{
      
// Function to group the mutually
// co-prime numbers into one group
static void mutually_coprime(int n)
{
    if (n <= 3)
    {
          
        // Loop for the numbers less
        // than the 4
        for(int j = 1; j < n + 1; j++)
           Console.Write(j + " ");
             
        Console.WriteLine();
    
    else
    {
          
        // ints 1, 2 and 3 can be
        // grouped into one group
        Console.WriteLine("1 2 3");
        for(int j = 4; j < n; j += 2)
        {
           // Consecutive even and
           // odd numbers
           Console.WriteLine(j + " " + (j + 1));
              
           if (n % 2 == 0)
               Console.WriteLine(n);
        }
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    int n = 9;
  
    // Function Call
    mutually_coprime(n);
}
}
// This code is contributed by sapnasingh4991

chevron_right


Output: 

1 2 3
4 5
6 7
8 9         

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sapnasingh4991, yatinagg