Given an array, arr[] of size N, the task is to print the GCD of all subarrays of size K.
Examples:
Input: arr[] = {2, 4, 3, 9, 14, 20, 25, 17}, K = 2
Output: 2 1 3 1 2 5 1
Explanation:
gcd(2, 4}) = 2
gcd(4, 3) = 1
gcd(3, 9) = 3
gcd(9, 14) = 1
gcd(14, 20) = 2
gcd(20, 25) = 5
gcd(25, 17) = 1
Therefore, the required output is {2, 1, 3, 1, 2, 5, 1}
Input: arr[] = {2, 4, 8, 24, 14, 20, 25, 35, 7, 49, 7}, K = 3
Output: 2 4 2 2 1 5 1 7 7
Approach: The idea is to generate all subarrays of size K and print the GCD of each subarray. To efficiently compute the GCD of each subarray, the idea is to use the following property of GCD.
GCD(A1, A2, A3, …, AK) = GCD(A1, GCD(A2, A3, A4, …., AK))
Follow the steps below to solve the problem:
- Initialize a variable, say gcd, to store the GCD of the current subarray.
- Generate K-length subarrays from the given array.
- Applying the above property of GCD, compute the GCD of each subarray, and print the obtained result.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void printSub( int arr[], int N,
int K)
{
for ( int i = 0; i <= N - K; i++) {
int gcd = arr[i];
for ( int j = i + 1; j < i + K;
j++) {
gcd = __gcd(gcd, arr[j]);
}
cout << gcd << " " ;
}
}
int main()
{
int arr[] = { 2, 4, 3, 9, 14,
20, 25, 17 };
int K = 2;
int N = sizeof (arr)
/ sizeof (arr[0]);
printSub(arr, N, K);
}
|
Java
class GFG{
static int __gcd( int a, int b)
{
if (b == 0 )
return a;
return __gcd(b, a % b);
}
static void printSub( int arr[],
int N, int K)
{
for ( int i = 0 ; i <= N - K; i++)
{
int gcd = arr[i];
for ( int j = i + 1 ; j < i + K; j++)
{
gcd = __gcd(gcd, arr[j]);
}
System.out.print(gcd + " " );
}
}
public static void main(String[] args)
{
int arr[] = { 2 , 4 , 3 , 9 ,
14 , 20 , 25 , 17 };
int K = 2 ;
int N = arr.length;
printSub(arr, N, K);
}
}
|
Python3
from math import gcd
def printSub(arr, N, K):
for i in range (N - K + 1 ):
g = arr[i]
for j in range (i + 1 , i + K):
g = gcd(g, arr[j])
print (g, end = " " )
if __name__ = = '__main__' :
arr = [ 2 , 4 , 3 , 9 , 14 ,
20 , 25 , 17 ]
K = 2
N = len (arr)
printSub(arr, N, K)
|
C#
using System;
class GFG{
static int __gcd( int a, int b)
{
if (b == 0)
return a;
return __gcd(b, a % b);
}
static void printSub( int []arr,
int N, int K)
{
for ( int i = 0; i <= N - K; i++)
{
int gcd = arr[i];
for ( int j = i + 1; j < i + K; j++)
{
gcd = __gcd(gcd, arr[j]);
}
Console.Write(gcd + " " );
}
}
public static void Main(String[] args)
{
int []arr = {2, 4, 3, 9,
14, 20, 25, 17};
int K = 2;
int N = arr.Length;
printSub(arr, N, K);
}
}
|
Javascript
<script>
function __gcd(a, b)
{
if (b == 0)
return a;
return __gcd(b, a % b);
}
function prletSub(arr, N, K)
{
for (let i = 0; i <= N - K; i++)
{
let gcd = arr[i];
for (let j = i + 1; j < i + K; j++)
{
gcd = __gcd(gcd, arr[j]);
}
document.write(gcd + " " );
}
}
let arr = [2, 4, 3, 9,
14, 20, 25, 17];
let K = 2;
let N = arr.length;
prletSub(arr, N, K);
</script>
|
Time Complexity: O((N – K + 1) * K)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Nov, 2021
Like Article
Save Article