Related Articles

# Maximum GCD of all subarrays of length at least 2

• Difficulty Level : Medium
• Last Updated : 04 Mar, 2021

Given an array arr[] of N numbers. The task is to find the maximum GCD of all subarrays of size greater than 1.
Examples:

Input: arr[] = { 3, 18, 9, 9, 5, 15, 8, 7, 6, 9 }
Output:
Explanation:
GCD of the subarray {18, 9, 9} is maximum which is 9.
Input: arr[] = { 4, 8, 12, 16, 20, 24 }
Output:
Explanation:
GCD of the subarray {4, 18, 12, 16, 20, 24} is maximum which is 4.

Naive Approach: The idea is to generate all the subarray of size greater than 1 and then find the maximum of gcd of all subarray formed.
Time complexity: O(N2)
Efficient Approach: Let GCD of two numbers be g. Now if we take gcd of g with any third number say c then, gcd will decrease or remain same, but it will never increase.
The idea is to find gcd of every consecutive pair in the arr[] and the maximum of gcd of all the pairs formed is the desired result.
Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ``using` `namespace` `std;` `// Function to find GCD``int` `gcd(``int` `a, ``int` `b)``{``    ``if` `(b == 0) {``        ``return` `a;``    ``}``    ``return` `gcd(b, a % b);``}` `void` `findMaxGCD(``int` `arr[], ``int` `n)``{` `    ``// To store the maximum GCD``    ``int` `maxGCD = 0;` `    ``// Traverse the array``    ``for` `(``int` `i = 0; i < n - 1; i++) {` `        ``// Find GCD of the consecutive``        ``// element``        ``int` `val = gcd(arr[i], arr[i + 1]);` `        ``// If calculated GCD > maxGCD``        ``// then update it``        ``if` `(val > maxGCD) {``            ``maxGCD = val;``        ``}``    ``}` `    ``// Print the maximum GCD``    ``cout << maxGCD << endl;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 3, 18, 9, 9, 5,``                  ``15, 8, 7, 6, 9 };` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``// Function Call``    ``findMaxGCD(arr, n);``    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.util.*;` `class` `GFG{` `// Function to find GCD``static` `int` `gcd(``int` `a, ``int` `b)``{``    ``if` `(b == ``0``)``    ``{``        ``return` `a;``    ``}``    ``return` `gcd(b, a % b);``}` `static` `void` `findMaxGCD(``int` `arr[], ``int` `n)``{` `    ``// To store the maximum GCD``    ``int` `maxGCD = ``0``;` `    ``// Traverse the array``    ``for``(``int` `i = ``0``; i < n - ``1``; i++)``    ``{``        ` `       ``// Find GCD of the consecutive``       ``// element``       ``int` `val = gcd(arr[i], arr[i + ``1``]);``       ` `       ``// If calculated GCD > maxGCD``       ``// then update it``       ``if` `(val > maxGCD)``       ``{``           ``maxGCD = val;``       ``}``    ``}` `    ``// Print the maximum GCD``    ``System.out.print(maxGCD + ``"\n"``);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``3``, ``18``, ``9``, ``9``, ``5``,``                  ``15``, ``8``, ``7``, ``6``, ``9` `};``    ``int` `n = arr.length;` `    ``// Function call``    ``findMaxGCD(arr, n);``}``}` `// This code is contributed by amal kumar choubey`

## Python3

 `# Python3 program for the above approach` `# Function to find GCD``def` `gcd(a, b):``    ` `    ``if` `(b ``=``=` `0``):``        ``return` `a;``    ``return` `gcd(b, a ``%` `b);` `def` `findMaxGCD(arr, n):``    ` `    ``# To store the maximum GCD``    ``maxGCD ``=` `0``;` `    ``# Traverse the array``    ``for` `i ``in` `range``(``0``, n ``-` `1``):` `        ``# Find GCD of the consecutive``        ``# element``        ``val ``=` `gcd(arr[i], arr[i ``+` `1``]);` `        ``# If calculated GCD > maxGCD``        ``# then update it``        ``if` `(val > maxGCD):``            ``maxGCD ``=` `val;` `    ``# Print the maximum GCD``    ``print``(maxGCD);` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``arr ``=` `[ ``3``, ``18``, ``9``, ``9``, ``5``,``            ``15``, ``8``, ``7``, ``6``, ``9` `];``    ``n ``=` `len``(arr);` `    ``# Function call``    ``findMaxGCD(arr, n);` `# This code is contributed by 29AjayKumar`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{` `// Function to find GCD``static` `int` `gcd(``int` `a, ``int` `b)``{``    ``if` `(b == 0)``    ``{``        ``return` `a;``    ``}``    ``return` `gcd(b, a % b);``}` `static` `void` `findMaxGCD(``int` `[]arr, ``int` `n)``{` `    ``// To store the maximum GCD``    ``int` `maxGCD = 0;` `    ``// Traverse the array``    ``for``(``int` `i = 0; i < n - 1; i++)``    ``{``        ` `        ``// Find GCD of the consecutive``        ``// element``        ``int` `val = gcd(arr[i], arr[i + 1]);``            ` `        ``// If calculated GCD > maxGCD``        ``// then update it``        ``if` `(val > maxGCD)``        ``{``            ``maxGCD = val;``        ``}``    ``}` `    ``// Print the maximum GCD``    ``Console.Write(maxGCD + ``"\n"``);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `[]arr = { 3, 18, 9, 9, 5,``                 ``15, 8, 7, 6, 9 };``    ``int` `n = arr.Length;` `    ``// Function call``    ``findMaxGCD(arr, n);``}``}` `// This code is contributed by Code_Mech`

## Javascript

 ``
Output:

`9`

Time Complexity: O(N), where N is the length of the array.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up