Given an array of n integers. The task is to find the first element that occurs k number of times. If no element occurs k times the print -1. The distribution of integer elements could be in any range.
Examples:
Input: {1, 7, 4, 3, 4, 8, 7},
k = 2
Output: 7
Both 7 and 4 occur 2 times.
But 7 is the first that occurs 2 times.Input: {4, 1, 6, 1, 6, 4},
k = 1
Output: -1
Simple Approach: By using two loops, count the number of times a number appears in the array.
Time complexity: O(n2).
Efficient Approach: Use unordered_map for hashing as range is not known. Steps:
- Traverse the array elements from left to right.
- While traversing increment their count in the hash table.
- Again traverse the array from left to right and check which element has a count equal to k. Print that element and stop.
- If no element has a count equal to k, print -1.
Below is a dry run of the above approach:
Below is the implementation of the above approach:
C++
// C++ implementation to find first // element occurring k times #include <bits/stdc++.h> using namespace std; // function to find the first element // occurring k number of times int firstElement( int arr[], int n, int k) { // unordered_map to count // occurrences of each element unordered_map< int , int > count_map; for ( int i=0; i<n; i++) count_map[arr[i]]++; for ( int i=0; i<n; i++) // if count of element == k ,then // it is the required first element if (count_map[arr[i]] == k) return arr[i]; // no element occurs k times return -1; } // Driver program to test above int main() { int arr[] = {1, 7, 4, 3, 4, 8, 7}; int n = sizeof (arr) / sizeof (arr[0]); int k = 2; cout << firstElement(arr, n, k); return 0; } |
Java
import java.util.HashMap; // Java implementation to find first // element occurring k times class GFG { // function to find the first element // occurring k number of times static int firstElement( int arr[], int n, int k) { // unordered_map to count // occurrences of each element HashMap<Integer, Integer> count_map = new HashMap<>(); for ( int i = 0 ; i < n; i++) { int a = 0 ; if (count_map.get(arr[i])!= null ){ a = count_map.get(arr[i]); } count_map.put(arr[i], a+ 1 ); } //count_map[arr[i]]++; for ( int i = 0 ; i < n; i++) // if count of element == k ,then // it is the required first element { if (count_map.get(arr[i]) == k) { return arr[i]; } } // no element occurs k times return - 1 ; } // Driver program to test above public static void main(String[] args) { int arr[] = { 1 , 7 , 4 , 3 , 4 , 8 , 7 }; int n = arr.length; int k = 2 ; System.out.println(firstElement(arr, n, k)); } } //this code contributed by Rajput-Ji |
Python3
# Python3 implementation to # find first element # occurring k times # function to find the # first element occurring # k number of times def firstElement(arr, n, k): # dictionary to count # occurrences of # each element count_map = {}; for i in range ( 0 , n): if (arr[i] in count_map.keys()): count_map[arr[i]] + = 1 else : count_map[arr[i]] = 1 i + = 1 for i in range ( 0 , n): # if count of element == k , # then it is the required # first element if (count_map[arr[i]] = = k): return arr[i] i + = 1 # no element occurs k times return - 1 # Driver Code if __name__ = = "__main__" : arr = [ 1 , 7 , 4 , 3 , 4 , 8 , 7 ]; n = len (arr) k = 2 print (firstElement(arr, n, k)) # This code is contributed # by Abhishek Sharma |
C#
// C# implementation to find first // element occurring k times using System; using System.Collections.Generic; class GFG { // function to find the first element // occurring k number of times static int firstElement( int []arr, int n, int k) { // unordered_map to count // occurrences of each element Dictionary< int , int > count_map = new Dictionary< int , int >(); for ( int i = 0; i < n; i++) { int a = 0; if (count_map.ContainsKey(arr[i])) { a = count_map[arr[i]]; count_map.Remove(arr[i]); count_map.Add(arr[i], a+1); } else count_map.Add(arr[i], 1); } //count_map[arr[i]]++; for ( int i = 0; i < n; i++) // if count of element == k ,then // it is the required first element { if (count_map[arr[i]] == k) { return arr[i]; } } // no element occurs k times return -1; } // Driver code public static void Main(String[] args) { int []arr = {1, 7, 4, 3, 4, 8, 7}; int n = arr.Length; int k = 2; Console.WriteLine(firstElement(arr, n, k)); } } // This code has been contributed by 29AjayKumar |
Output:
7
Time Complexity: O(n)
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.