Find the sum of all highest occurring elements in an Array

Given an array of integers containing duplicate elements. The task is to find the sum of all highest occurring elements in the given array. That is the sum of all such elements whose frequency is maximum in the array.

Examples:

Input : arr[] = {1, 1, 2, 2, 2, 2, 3, 3, 3, 3}
Output : 20
The highest occuring elements are 3 and 2 and their
frequency is 4. Therefore sum of all 3's and 2's in the 
array = 3+3+3+3+2+2+2+2 = 20.

Input : arr[] = {10, 20, 30, 40, 40}
Output : 80

Approach:

  • Traverse the array and use a unordered_map in C++ to store the frequency of elements of the array such that the key of map is the array element and value is its frequency in the array.
  • Then, traverse the map to find the frequency of the max occurring element.
  • Now, to find the sum traverse the map again and for all elements with maximum frequency find frequency_of_max_occurring_element*max_occurring_element and find their sum..

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the sum of all maximum
// occurring elements in an array
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the sum of all maximum
// occurring elements in an array
int findSum(int arr[], int N)
{
    // Store frequencies of elements
    // of the array
    unordered_map<int, int> mp;
    for (int i = 0; i < N; i++) 
        mp[arr[i]]++;
      
  
    // Find the max frequency
    int maxFreq = 0;
    for (auto itr = mp.begin(); itr != mp.end(); itr++) {
        if (itr->second > maxFreq) {
            maxFreq = itr->second;
        }
    }
  
    // Traverse the map again and find the sum
    int sum = 0;
    for (auto itr = mp.begin(); itr != mp.end(); itr++) {
        if (itr->second == maxFreq) {
            sum += itr->first * itr->second;
        }
    }
  
    return sum;
}
  
// Driver Code
int main()
{
    int arr[] = { 1, 1, 2, 2, 2, 2, 3, 3, 3, 3 };
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    cout << findSum(arr, N);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum of all maximum
// occurring elements in an array
import java.util.*;
  
class GFG 
{
  
// Function to find the sum of all maximum
// occurring elements in an array
static int findSum(int arr[], int N)
{
    // Store frequencies of elements
    // of the array
    Map<Integer,Integer> mp = new HashMap<>();
    for (int i = 0 ; i < N; i++)
    {
        if(mp.containsKey(arr[i]))
        {
            mp.put(arr[i], mp.get(arr[i])+1);
        }
        else
        {
            mp.put(arr[i], 1);
        }
    }
  
    // Find the max frequency
    int maxFreq = 0;
    for (Map.Entry<Integer,Integer> entry : mp.entrySet()) 
    {
        if (entry.getValue() > maxFreq) 
        {
            maxFreq = entry.getValue();
        }
    }
  
    // Traverse the map again and find the sum
    int sum = 0;
    for (Map.Entry<Integer,Integer> entry : mp.entrySet()) 
    {
        if (entry.getValue() == maxFreq) 
        {
            sum += entry.getKey() * entry.getValue();
        }
    }
  
    return sum;
}
  
// Driver Code
public static void main(String[] args)
{
  
    int arr[] = { 1, 1, 2, 2, 2, 2, 3, 3, 3, 3 };
  
    int N = arr.length;
    System.out.println(findSum(arr, N));
}
}
  
// This code is contributed by Princi Singh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the Sum of all maximum
# occurring elements in an array
  
# Function to find the Sum of all maximum
# occurring elements in an array
def findSum(arr, N):
      
    # Store frequencies of elements
    # of the array
    mp = dict()
    for i in range(N): 
        mp[arr[i]] = mp.get(arr[i], 0) + 1
      
  
    # Find the max frequency
    maxFreq = 0
    for itr in mp:
        if (mp[itr] > maxFreq):
            maxFreq = mp[itr]
          
  
    # Traverse the map again and find the Sum
    Sum = 0
    for itr in mp:
        if (mp[itr] == maxFreq):
            Sum += itr* mp[itr]
      
    return Sum
  
  
# Driver Code
  
arr= [1, 1, 2, 2, 2, 2, 3, 3, 3, 3 ]
  
N = len(arr)
  
print(findSum(arr, N))
  
# This code is contributed by mohit kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the sum of all maximum
// occurring elements in an array
using System;
using System.Collections.Generic; 
  
class GFG 
{
  
// Function to find the sum of all maximum
// occurring elements in an array
static int findSum(int []arr, int N)
{
    // Store frequencies of elements
    // of the array
    Dictionary<int,int> mp = new Dictionary<int,int>();
    for (int i = 0 ; i < N; i++)
    {
        if(mp.ContainsKey(arr[i]))
        {
            var val = mp[arr[i]];
            mp.Remove(arr[i]);
            mp.Add(arr[i], val + 1); 
        }
        else
        {
            mp.Add(arr[i], 1);
        }
    }
  
    // Find the max frequency
    int maxFreq = 0;
    foreach(KeyValuePair<int, int> entry in mp) 
    {
        if (entry.Value > maxFreq) 
        {
            maxFreq = entry.Value;
        }
    }
  
    // Traverse the map again and find the sum
    int sum = 0;
    foreach(KeyValuePair<int, int> entry in mp)
    {
        if (entry.Value == maxFreq) 
        {
            sum += entry.Key * entry.Value;
        }
    }
  
    return sum;
}
  
// Driver Code
public static void Main(String[] args)
{
  
    int []arr = { 1, 1, 2, 2, 2, 2, 3, 3, 3, 3 };
  
    int N = arr.Length;
    Console.WriteLine(findSum(arr, N));
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

20

Time Complexity: O(N), where N is the number of elements in the array.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.