# Find the size of Largest Subset with positive Bitwise AND

• Last Updated : 07 Oct, 2021

Given an array arr[] consisting of N positive integers, the task is to find the largest size of the subset of the array arr[] with positive Bitwise AND.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = [7, 13, 8, 2, 3]
Output: 3
Explanation:
The subset having Bitwise AND positive is {13, 7, 3} is of length 3, which is of maximum length among all possible subsets.

Input: arr[] = [1, 2, 4, 8]
Output: 1

Approach: The given problem can be solved by counting the number of set bits at each corresponding bits position for all array elements and then the count of the maximum of set bits at any position is the maximum count of subset required because the Bitwise AND of all those elements is always positive. Follow the steps below to solve the given problem:

• Initialize an array, say bit[] of size 32 that stores the count of set bits at each ith bit position.
• Traverse the given array and for each element, say arr[i] increment the frequency of the ith bit in the array bit[] if the ith bit is set in arr[i].
• After the above steps, print the maximum of the array bit[] to print the maximum size of the subset.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ``using` `namespace` `std;` `// Function to find the largest possible``// subset having Bitwise AND positive``void` `largestSubset(``int` `a[], ``int` `N)``{``    ``// Stores the number of set bits``    ``// at each bit position``    ``int` `bit = { 0 };` `    ``// Traverse the given array arr[]``    ``for` `(``int` `i = 0; i < N; i++) {` `        ``// Current bit position``        ``int` `x = 31;` `        ``// Loop till array element``        ``// becomes zero``        ``while` `(a[i] > 0) {` `            ``// If the last bit is set``            ``if` `(a[i] & 1 == 1) {` `                ``// Increment frequency``                ``bit[x]++;``            ``}` `            ``// Divide array element by 2``            ``a[i] = a[i] >> 1;` `            ``// Decrease the bit position``            ``x--;``        ``}``    ``}` `    ``// Size of the largest possible subset``    ``cout << *max_element(bit, bit + 32);``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 7, 13, 8, 2, 3 };``    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr);``    ``largestSubset(arr, N);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.io.*;``class` `GFG``{``  ` `      ``static` `void` `largestSubset(``int` `a[], ``int` `N)``    ``{` `        ``// Stores the number of set bits``        ``// at each bit position``        ``int` `bit[] = ``new` `int``[``32``];` `        ``// Traverse the given array arr[]``        ``for` `(``int` `i = ``0``; i < N; i++) {` `            ``// Current bit position``            ``int` `x = ``31``;` `            ``// Loop till array element``            ``// becomes zero``            ``while` `(a[i] > ``0``) {` `                ``// If the last bit is set``                ``if` `((``int``)(a[i] & ``1``) == (``int``)``1``) {` `                    ``// Increment frequency``                    ``bit[x]++;``                ``}` `                ``// Divide array element by 2``                ``a[i] = a[i] >> ``1``;` `                ``// Decrease the bit position``                ``x--;``            ``}``        ``}` `        ``// Size of the largest possible subset``        ``int` `max = Integer.MIN_VALUE;` `        ``for` `(``int` `i = ``0``; i < ``32``; i++) {``            ``max = Math.max(max, bit[i]);``        ``}` `        ``System.out.println(max);``    ``}``  ` `  ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `arr[] = {``7``, ``13``, ``8``, ``2``, ``3``};``        ``int` `N = arr.length;``        ``largestSubset(arr, N);``    ``}``}` `// This code is contributed by Dharanendra L V.`

## Python3

 `# Python 3 program for the above approach` `# Function to find the largest possible``# subset having Bitwise AND positive``def` `largestSubset(a, N):``    ``# Stores the number of set bits``    ``# at each bit position``    ``bit ``=` `[``0` `for` `i ``in` `range``(``32``)]` `    ``# Traverse the given array arr[]``    ``for` `i ``in` `range``(N):``        ``# Current bit position``        ``x ``=` `31` `        ``# Loop till array element``        ``# becomes zero``        ``while``(a[i] > ``0``):``            ``# If the last bit is set``            ``if` `(a[i] & ``1` `=``=` `1``):` `                ``# Increment frequency``                ``bit[x] ``+``=` `1` `            ``# Divide array element by 2``            ``a[i] ``=` `a[i] >> ``1` `            ``# Decrease the bit position``            ``x ``-``=` `1` `    ``# Size of the largest possible subset``    ``print``(``max``(bit))` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``arr ``=` `[``7``, ``13``, ``8``, ``2``, ``3``]``    ``N ``=` `len``(arr)``    ``largestSubset(arr, N)` `    ``# This code is contributed by ipg016107.`

## C#

 `// C# program for the above approach``using` `System;``class` `GFG {` `    ``static` `void` `largestSubset(``int``[] a, ``int` `N)``    ``{` `        ``// Stores the number of set bits``        ``// at each bit position``        ``int``[] bit = ``new` `int``;` `        ``// Traverse the given array arr[]``        ``for` `(``int` `i = 0; i < N; i++) {` `            ``// Current bit position``            ``int` `x = 31;` `            ``// Loop till array element``            ``// becomes zero``            ``while` `(a[i] > 0) {` `                ``// If the last bit is set``                ``if` `((``int``)(a[i] & 1) == (``int``)1) {` `                    ``// Increment frequency``                    ``bit[x]++;``                ``}` `                ``// Divide array element by 2``                ``a[i] = a[i] >> 1;` `                ``// Decrease the bit position``                ``x--;``            ``}``        ``}` `        ``// Size of the largest possible subset``        ``int` `max = Int32.MinValue;` `        ``for` `(``int` `i = 0; i < 32; i++) {``            ``max = Math.Max(max, bit[i]);``        ``}` `        ``Console.WriteLine(max);``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main(``string``[] args)``    ``{``        ``int``[] arr = { 7, 13, 8, 2, 3 };``        ``int` `N = arr.Length;``        ``largestSubset(arr, N);``    ``}``}` `// This code is contributed by ukasp.`

## Javascript

 ``
Output:
`3`

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up