# Find the Nth Mosaic number

Given an integer N, the task is to find the Nth Mosaic number. A Mosaic number can be expressed as follows:
If N = Aa * Bb * Cc where A, B, C.. are the prime factors of N then the Nth Mosaic number will be A * a * B * b * C * c ….

Examples:

Input: N = 8
Output: 6
8 can be expressed as 23.
So, the 8th Mosaic number will be 2 * 3 = 6

Input: N = 36
Output: 24
36 can be expressed as 22 * 32.
2 * 2 * 3 * 2 = 24

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: We have to find all the prime factors and also the powers of the factors in the number by dividing the number by the factor until the factor divides the number. The Nth Mosaic number will then be the product of the found prime factors and their powers.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the nth mosaic number ` `int` `mosaic(``int` `n) ` `{ ` `    ``int` `i, ans = 1; ` ` `  `    ``// Iterate from 2 to the number ` `    ``for` `(i = 2; i <= n; i++) { ` ` `  `        ``// If i is the factor of n ` `        ``if` `(n % i == 0 && n > 0) { ` `            ``int` `count = 0; ` ` `  `            ``// Find the count where i^count ` `            ``// is a factor of n ` `            ``while` `(n % i == 0) { ` ` `  `                ``// Divide the number by i ` `                ``n /= i; ` ` `  `                ``// Increase the count ` `                ``count++; ` `            ``} ` ` `  `            ``// Multiply the answer with ` `            ``// count and i ` `            ``ans *= count * i; ` `        ``} ` `    ``} ` ` `  `    ``// Return the answer ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 36; ` `    ``cout << mosaic(n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.io.*; ` ` `  `class` `GFG  ` `{ ` `     `  `// Function to return the nth mosaic number ` `static` `int` `mosaic(``int` `n) ` `{ ` `    ``int` `i, ans = ``1``; ` ` `  `    ``// Iterate from 2 to the number ` `    ``for` `(i = ``2``; i <= n; i++)  ` `    ``{ ` ` `  `        ``// If i is the factor of n ` `        ``if` `(n % i == ``0` `&& n > ``0``) ` `        ``{ ` `            ``int` `count = ``0``; ` ` `  `            ``// Find the count where i^count ` `            ``// is a factor of n ` `            ``while` `(n % i == ``0``) ` `            ``{ ` ` `  `                ``// Divide the number by i ` `                ``n /= i; ` ` `  `                ``// Increase the count ` `                ``count++; ` `            ``} ` ` `  `            ``// Multiply the answer with ` `            ``// count and i ` `            ``ans *= count * i; ` `        ``} ` `    ``} ` ` `  `    ``// Return the answer ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `     `  `    ``int` `n = ``36``; ` `    ``System.out.println (mosaic(n)); ` `} ` `} ` ` `  `// This code is contributed by jit_t. `

## Python

 `# Python3 implementation of the approach ` ` `  `# Function to return the nth mosaic number ` `def` `mosaic(n): ` ` `  `    ``i``=``0` `    ``ans ``=` `1` ` `  `    ``# Iterate from 2 to the number ` `    ``for` `i ``in` `range``(``2``,n``+``1``): ` ` `  `        ``# If i is the factor of n ` `        ``if` `(n ``%` `i ``=``=` `0` `and` `n > ``0``): ` `            ``count ``=` `0` ` `  `            ``# Find the count where i^count ` `            ``# is a factor of n ` `            ``while` `(n ``%` `i ``=``=` `0``): ` ` `  `                ``# Divide the number by i ` `                ``n ``/``/``=` `i ` ` `  `                ``# Increase the count ` `                ``count``+``=``1` `             `  ` `  `            ``# Multiply the answer with ` `            ``# count and i ` `            ``ans ``*``=` `count ``*` `i ` `         `  ` `  `    ``# Return the answer ` `    ``return` `ans ` ` `  `# Driver code ` ` `  `n ``=` `36` `print``(mosaic(n)) ` ` `  `# This code is contributed by mohit kumar 29 `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// Function to return the nth mosaic number ` `static` `int` `mosaic(``int` `n) ` `{ ` `    ``int` `i, ans = 1; ` ` `  `    ``// Iterate from 2 to the number ` `    ``for` `(i = 2; i <= n; i++)  ` `    ``{ ` ` `  `        ``// If i is the factor of n ` `        ``if` `(n % i == 0 && n > 0) ` `        ``{ ` `            ``int` `count = 0; ` ` `  `            ``// Find the count where i^count ` `            ``// is a factor of n ` `            ``while` `(n % i == 0) ` `            ``{ ` ` `  `                ``// Divide the number by i ` `                ``n /= i; ` ` `  `                ``// Increase the count ` `                ``count++; ` `            ``} ` ` `  `            ``// Multiply the answer with ` `            ``// count and i ` `            ``ans *= count * i; ` `        ``} ` `    ``} ` ` `  `    ``// Return the answer ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `static` `public` `void` `Main () ` `{ ` `    ``int` `n = 36; ` `    ``Console.WriteLine(mosaic(n)); ` `} ` `} ` ` `  `// This code is contributed by ajit.. `

Output:

```24
``` My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : mohit kumar 29, jit_t