Open In App
Related Articles

Find the node whose xor with x gives maximum value

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a tree, and the weights of all the nodes and an integer x, the task is to find a node i such that weight[i] xor x is maximum.
Examples: 
 

Input: 
 

x = 15 
Output:
Node 1: 5 xor 15 = 10 
Node 2: 10 xor 15 = 5 
Node 3: 11 xor 15 = 4 
Node 4: 8 xor 15 = 7 
Node 5: 6 xor 15 = 9 
 

 

Approach: Perform dfs on the tree and keep track of the node whose weighted xor with x gives the maximum value.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int maximum = INT_MIN, x, ans;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function to perform dfs to find
// the maximum xored value
void dfs(int node, int parent)
{
    // If current value is less than
    // the current maximum
    if (maximum < (weight[node] ^ x)) {
        maximum = weight[node] ^ x;
        ans = node;
    }
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    x = 15;
 
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
    static int maximum = Integer.MIN_VALUE, x, ans;
 
    @SuppressWarnings("unchecked")
    static Vector<Integer>[] graph = new Vector[100];
    static int[] weight = new int[100];
 
    // This block is executed even before main() function
    // This is necessary otherwise this program will
    // throw "NullPointerException"
    static
    {
        for (int i = 0; i < 100; i++)
            graph[i] = new Vector<>();
    }
 
    // Function to perform dfs to find
    // the maximum xored value
    static void dfs(int node, int parent)
    {
 
        // If current value is less than
        // the current maximum
        if (maximum < (weight[node] ^ x))
        {
            maximum = weight[node] ^ x;
            ans = node;
        }
        for (int to : graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        x = 15;
 
        // Weights of the node
        weight[1] = 5;
        weight[2] = 10;
        weight[3] = 11;
        weight[4] = 8;
        weight[5] = 6;
 
        // Edges of the tree
        graph[1].add(2);
        graph[2].add(3);
        graph[2].add(4);
        graph[1].add(5);
 
        dfs(1, 1);
 
        System.out.println(ans);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
import sys
maximum = -sys.maxsize - 1
graph = [[0 for i in range(100)]
            for j in range(100)]
weight = [0 for i in range(100)]
ans = []
 
# Function to perform dfs to find
# the maximum xored value
def dfs(node, parent):
    global maximum
     
    # If current value is less than
    # the current maximum
    if (maximum < (weight[node] ^ x)):
        maximum = weight[node] ^ x
        ans.append(node)
         
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
         
# Driver code
if __name__ == '__main__':
    x = 15
 
    # Weights of the node
    weight[1] = 5
    weight[2] = 10
    weight[3] = 11
    weight[4] = 8
    weight[5] = 6
 
    # Edges of the tree
    graph[1].append(2)
    graph[2].append(3)
    graph[2].append(4)
    graph[1].append(5)
 
    dfs(1, 1)
 
    print(ans[0])
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
static int maximum = int.MinValue, x,
ans = int.MaxValue;
 
static List<List<int>> graph = new List<List<int>>();
static List<int> weight = new List<int>();
 
 
// Function to perform dfs to find
// the maximum value
static void dfs(int node, int parent)
{
    // If current value is less than
    // the current maximum
    if (maximum < (weight[node] ^ x))
    {
        maximum = weight[node] ^ x;
        ans = node;
    }
         
    for (int i = 0; i < graph[node].Count; i++)
    {
        if (graph[node][i] == parent)
            continue;
        dfs(graph[node][i], node);
    }
}
 
// Driver code
public static void Main()
{
    x = 15;
 
    // Weights of the node
    weight.Add(0);
    weight.Add(5);
    weight.Add(10);
    weight.Add(11);;
    weight.Add(8);
    weight.Add(6);
     
    for(int i = 0; i < 100; i++)
    graph.Add(new List<int>());
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
 
    dfs(1, 1);
    Console.Write( ans);
}
}
 
// This code is contributed by SHUBHAMSINGH10


Javascript




<script>
// Javascript implementation of the approach
 
 
let maximum = Number.MIN_SAFE_INTEGER;
let ans = [];
 
let graph = new Array();
 
for(let i = 0; i < 100; i++){
    graph.push(new Array().fill(0));
}
 
let weight = new Array(100).fill(0);
 
 
// Function to perform dfs to find
// the maximum xored value
function dfs(node, parent) {
    // If current value is less than
    // the current maximum
    if (maximum < (weight[node] ^ x)) {
        maximum = weight[node] ^ x;
        ans = node;
    }
    for (let to of graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
 
let x = 15;
 
// Weights of the node
weight[1] = 5;
weight[2] = 10;
weight[3] = 11;
weight[4] = 8;
weight[5] = 6;
 
// Edges of the tree
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
 
dfs(1, 1);
 
document.write(ans);
 
// This code is contributed by gfgking
</script>


Output: 

1

 

Complexity Analysis: 
 

  • Time Complexity : O(N). 
    In dfs, every node of the tree is processed once and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Therefore, the time complexity is O(N).
  • Auxiliary Space : O(1). 
    Any extra space is not required, so the space complexity is constant.

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 09 Jun, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials