Given a tree, and the weights of all the nodes and an integer x, the task is to find a node i such that weight[i] xor x is maximum.
Examples:
Input:

x = 15
Output: 1
Node 1: 5 xor 15 = 10
Node 2: 10 xor 15 = 5
Node 3: 11 xor 15 = 4
Node 4: 8 xor 15 = 7
Node 5: 6 xor 15 = 9
Approach: Perform dfs on the tree and keep track of the node whose weighted xor with x gives the maximum value.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int maximum = INT_MIN, x, ans;
vector< int > graph[100];
vector< int > weight(100);
void dfs( int node, int parent)
{
if (maximum < (weight[node] ^ x)) {
maximum = weight[node] ^ x;
ans = node;
}
for ( int to : graph[node]) {
if (to == parent)
continue ;
dfs(to, node);
}
}
int main()
{
x = 15;
weight[1] = 5;
weight[2] = 10;
weight[3] = 11;
weight[4] = 8;
weight[5] = 6;
graph[1].push_back(2);
graph[2].push_back(3);
graph[2].push_back(4);
graph[1].push_back(5);
dfs(1, 1);
cout << ans;
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int maximum = Integer.MIN_VALUE, x, ans;
@SuppressWarnings ( "unchecked" )
static Vector<Integer>[] graph = new Vector[ 100 ];
static int [] weight = new int [ 100 ];
static
{
for ( int i = 0 ; i < 100 ; i++)
graph[i] = new Vector<>();
}
static void dfs( int node, int parent)
{
if (maximum < (weight[node] ^ x))
{
maximum = weight[node] ^ x;
ans = node;
}
for ( int to : graph[node])
{
if (to == parent)
continue ;
dfs(to, node);
}
}
public static void main(String[] args)
{
x = 15 ;
weight[ 1 ] = 5 ;
weight[ 2 ] = 10 ;
weight[ 3 ] = 11 ;
weight[ 4 ] = 8 ;
weight[ 5 ] = 6 ;
graph[ 1 ].add( 2 );
graph[ 2 ].add( 3 );
graph[ 2 ].add( 4 );
graph[ 1 ].add( 5 );
dfs( 1 , 1 );
System.out.println(ans);
}
}
|
Python3
import sys
maximum = - sys.maxsize - 1
graph = [[ 0 for i in range ( 100 )]
for j in range ( 100 )]
weight = [ 0 for i in range ( 100 )]
ans = []
def dfs(node, parent):
global maximum
if (maximum < (weight[node] ^ x)):
maximum = weight[node] ^ x
ans.append(node)
for to in graph[node]:
if (to = = parent):
continue
dfs(to, node)
if __name__ = = '__main__' :
x = 15
weight[ 1 ] = 5
weight[ 2 ] = 10
weight[ 3 ] = 11
weight[ 4 ] = 8
weight[ 5 ] = 6
graph[ 1 ].append( 2 )
graph[ 2 ].append( 3 )
graph[ 2 ].append( 4 )
graph[ 1 ].append( 5 )
dfs( 1 , 1 )
print (ans[ 0 ])
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int maximum = int .MinValue, x,
ans = int .MaxValue;
static List<List< int >> graph = new List<List< int >>();
static List< int > weight = new List< int >();
static void dfs( int node, int parent)
{
if (maximum < (weight[node] ^ x))
{
maximum = weight[node] ^ x;
ans = node;
}
for ( int i = 0; i < graph[node].Count; i++)
{
if (graph[node][i] == parent)
continue ;
dfs(graph[node][i], node);
}
}
public static void Main()
{
x = 15;
weight.Add(0);
weight.Add(5);
weight.Add(10);
weight.Add(11);;
weight.Add(8);
weight.Add(6);
for ( int i = 0; i < 100; i++)
graph.Add( new List< int >());
graph[1].Add(2);
graph[2].Add(3);
graph[2].Add(4);
graph[1].Add(5);
dfs(1, 1);
Console.Write( ans);
}
}
|
Javascript
<script>
let maximum = Number.MIN_SAFE_INTEGER;
let ans = [];
let graph = new Array();
for (let i = 0; i < 100; i++){
graph.push( new Array().fill(0));
}
let weight = new Array(100).fill(0);
function dfs(node, parent) {
if (maximum < (weight[node] ^ x)) {
maximum = weight[node] ^ x;
ans = node;
}
for (let to of graph[node]) {
if (to == parent)
continue ;
dfs(to, node);
}
}
let x = 15;
weight[1] = 5;
weight[2] = 10;
weight[3] = 11;
weight[4] = 8;
weight[5] = 6;
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
dfs(1, 1);
document.write(ans);
</script>
|
Complexity Analysis:
- Time Complexity : O(N).
In dfs, every node of the tree is processed once and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Therefore, the time complexity is O(N).
- Auxiliary Space : O(1).
Any extra space is not required, so the space complexity is constant.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
09 Jun, 2021
Like Article
Save Article