Find the lexicographically largest palindromic Subsequence of a String

Given a string S. The task is to find the lexicographically largest subsequence of the string which is a palindrome.

Examples:

Input : str = "abrakadabra"
Output : rr

Input : str = "geeksforgeeks"
Output : ss

The idea is to observe a character a is said to be lexicographically larger than a character b if it’s ASCII value is greater than that of b.

Since the string has to be palindromic, the string should contain the largest characters only, as if we place any other smaller character in between the first and last character then it will make the string lexicographically smaller.

To find the lexicographically largest subsequence, first find the largest characters in the given string and append all of its occurrences in the original string to form the resultant subsequence string.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the largest
// palindromic subsequence
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the largest
// palindromic subsequence
string largestPalinSub(string s)
{
    string res;
  
    char mx = s[0];
  
    // Find the largest character
    for (int i = 1; i < s.length(); i++)
        mx = max(mx, s[i]);
  
    // Append all occurrences of largest character
    // to the resultant string
    for (int i = 0; i < s.length(); i++)
        if (s[i] == mx)
            res += s[i];
  
    return res;
}
  
// Driver Code
int main()
{
    string s = "geeksforgeeks";
  
    cout << largestPalinSub(s);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the largest 
// palindromic subsequence 
class GFG
{
  
// Function to find the largest 
// palindromic subsequence 
static String largestPalinSub(String s) 
    String res = ""
    char mx = s.charAt(0); 
  
    // Find the largest character 
    for (int i = 1; i < s.length(); i++) 
        mx = (char)Math.max((int)mx, 
                  (int)s.charAt(i)); 
  
    // Append all occurrences of largest 
    // character to the resultant string 
    for (int i = 0; i < s.length(); i++) 
        if (s.charAt(i) == mx) 
            res += s.charAt(i); 
  
    return res; 
  
// Driver Code
public static void main(String []args)
{
    String s = "geeksforgeeks"
    System.out.println(largestPalinSub(s));
}
}
  
// This code is contributed by
// Rituraj Jain

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the largest 
# palindromic subsequence 
  
# Function to find the largest 
# palindromic subsequence 
def largestPalinSub(s): 
  
    res = "" 
    mx = s[0
  
    # Find the largest character 
    for i in range(1, len(s)): 
        mx = max(mx, s[i]) 
  
    # Append all occurrences of largest 
    # character to the resultant string 
    for i in range(0, len(s)): 
        if s[i] == mx: 
            res += s[i] 
  
    return res 
  
# Driver Code 
if __name__ == "__main__":
  
    s = "geeksforgeeks"
    print(largestPalinSub(s)) 
  
# This code is contributed by
# Rituraj Jain 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the largest 
// palindromic subsequence 
using System;
  
class GFG
{
  
    // Function to find the largest 
    // palindromic subsequence 
    static string largestPalinSub(string s) 
    
        string res = ""
        char mx = s[0]; 
      
        // Find the largest character 
        for (int i = 1; i < s.Length; i++) 
            mx = (char)Math.Max((int)mx, 
                    (int)s[i]); 
      
        // Append all occurrences of largest 
        // character to the resultant string 
        for (int i = 0; i < s.Length; i++) 
            if (s[i] == mx) 
                res += s[i]; 
      
        return res; 
    
      
    // Driver Code
    public static void Main()
    {
        string s = "geeksforgeeks"
        Console.WriteLine(largestPalinSub(s));
    }
}
  
// This code is contributed by Ryuga

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
      
// PHP program to find the largest
// palindromic subsequence
  
// Function to find the largest
// palindromic subsequence
function largestPalinSub($s)
{
    $res="";
  
    $mx = $s[0];
  
    // Find the largest character
    for ($i = 1; $i < strlen($s); $i++)
    {
        $mx = max($mx, $s[$i]);
          
    }
  
    // Append all occurrences of largest character
    // to the resultant string
    for ($i = 0; $i < strlen($s); $i++)
    {
        if ($s[$i] == $mx)
        {
            $res.=$s[$i];
        }
    }
          
    return $res;
}
  
// Driver Code
$s = "geeksforgeeks";
echo(largestPalinSub($s));
  
// This code is contributed by princiraj1992
?>

chevron_right


Output:

ss

Time Complexity: O(N), where N is the length of the string.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.