Given a balanced bracket sequence as a string str containing character ‘(‘ or ‘)’, the task is to find the next lexicographical order balanced sequence if possible else print -1.
Examples:
Input: str = “(())”
Output: ()()
Input: str = “((()))”
Output: (()())
Approach: First find the rightmost opening bracket which we can replace it by a closing bracket to get the lexicographically larger bracket string. The updated string might not be balanced, we can fill the remaining part of the string with the lexicographically minimal one: i.e. first with as much opening brackets as possible, and then fill up the remaining positions with closing brackets. In other words we try to leave a long as possible prefix unchanged, and the suffix gets replaced by the lexicographically minimal one.
To find this position, we can iterate over the character from right to left, and maintain the balance depth of open and closing brackets. When we meet an opening brackets, we will decrement depth, and when we meet a closing bracket, we increase it. If we are at some point meet an opening bracket, and the balance after processing this symbol is positive, then we have found the rightmost position that we can change. We change the symbol, compute the number of opening and closing brackets that we have to add to the right side, and arrange them in the lexicographically minimal way.
If we find no suitable position, then this sequence is already the maximal possible one, and there is no answer.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
string next_balanced_sequence(string& s)
{
string next = "-1" ;
int length = s.size();
int depth = 0;
for ( int i = length - 1; i >= 0; --i) {
if (s[i] == '(' )
depth--;
else
depth++;
if (s[i] == '(' && depth > 0) {
depth--;
int open = (length - i - 1 - depth) / 2;
int close = length - i - 1 - open;
next = s.substr(0, i) + ')'
+ string(open, '(' )
+ string(close, ')' );
break ;
}
}
return next;
}
int main()
{
string s = "((()))" ;
cout << next_balanced_sequence(s);
return 0;
}
|
Java
class Sol
{
static String string( int c, char d)
{
String s = "" ;
for ( int i = 0 ; i < c; i++)
s += d;
return s;
}
static String next_balanced_sequence(String s)
{
String next = "-1" ;
int length = s.length();
int depth = 0 ;
for ( int i = length - 1 ; i >= 0 ; --i)
{
if (s.charAt(i) == '(' )
depth--;
else
depth++;
if (s.charAt(i) == '(' && depth > 0 )
{
depth--;
int open = (length - i - 1 - depth) / 2 ;
int close = length - i - 1 - open;
next = s.substring( 0 , i) + ')'
+ string(open, '(' )
+ string(close, ')' );
break ;
}
}
return next;
}
public static void main(String args[])
{
String s = "((()))" ;
System.out.println(next_balanced_sequence(s));
}
}
|
Python3
def next_balanced_sequence(s) :
next = "-1" ;
length = len (s);
depth = 0 ;
for i in range (length - 1 , - 1 , - 1 ) :
if (s[i] = = '(' ) :
depth - = 1 ;
else :
depth + = 1 ;
if (s[i] = = '(' and depth > 0 ) :
depth - = 1 ;
open = (length - i - 1 - depth) / / 2 ;
close = length - i - 1 - open ;
next = s[ 0 : i] + ')' + open * '(' + close * ')' ;
break ;
return next ;
if __name__ = = "__main__" :
s = "((()))" ;
print (next_balanced_sequence(s));
|
C#
using System;
class GFG
{
static String strings( int c, char d)
{
String s = "" ;
for ( int i = 0; i < c; i++)
s += d;
return s;
}
static String next_balanced_sequence(String s)
{
String next = "-1" ;
int length = s.Length;
int depth = 0;
for ( int i = length - 1; i >= 0; --i)
{
if (s[i] == '(' )
depth--;
else
depth++;
if (s[i] == '(' && depth > 0)
{
depth--;
int open = (length - i - 1 - depth) / 2;
int close = length - i - 1 - open;
next = s.Substring(0, i) + ')' +
strings(open, '(' ) +
strings(close, ')' );
break ;
}
}
return next;
}
public static void Main(String []args)
{
String s = "((()))" ;
Console.WriteLine(next_balanced_sequence(s));
}
}
|
Javascript
<script>
function string(c, d)
{
let s = "" ;
for (let i = 0; i < c; i++)
s += d;
return s;
}
function next_balanced_sequence(s)
{
let next = "-1" ;
let length = s.length;
let depth = 0;
for (let i = length - 1; i >= 0; --i)
{
if (s[i] == '(' )
depth--;
else
depth++;
if (s[i] == '(' && depth > 0)
{
depth--;
let open = (length - i - 1 - depth) / 2;
let close = length - i - 1 - open;
next = s.substr(0, i) + ')'
+ string(open, '(' )
+ string(close, ')' );
break ;
}
}
return next;
}
let s = "((()))" ;
document.write(next_balanced_sequence(s));
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
24 Feb, 2023
Like Article
Save Article