Find the farthest smaller number in the right side

Given an array arr[] of size N. For every element in the array, the task is to find the index of the farthest element in the array to the right which is smaller than the current element. If no such number exists then print -1.

Examples:

Input: arr[] = {3, 1, 5, 2, 4}
Output: 3 -1 4 -1 -1
arr[3] is the farthest smallest element to the right of arr[0].
arr[4] is the farthest smallest element to the right of arr[2].
And for the rest of the elements, there is no smaller element to their right.



Input: arr[] = {1, 2, 3, 4, 0}
Output: 4 4 4 4 -1

Approach: An efficient approach is to create a suffix_min[] array where suffix_min[i] stores the minimum element from the subarray arr[i … N – 1]. Now for any element arr[i], binary search can be used on the subarray suffix_min[i + 1 … N – 1] to find the farthest smallest element to the right of arr[i].

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the farthest
// smaller number in the right side
void farthest_min(int a[], int n)
{
    // To store minimum element
    // in the range i to n
    int suffix_min[n];
    suffix_min[n - 1] = a[n - 1];
    for (int i = n - 2; i >= 0; i--) {
        suffix_min[i] = min(suffix_min[i + 1], a[i]);
    }
  
    for (int i = 0; i < n; i++) {
        int low = i + 1, high = n - 1, ans = -1;
  
        while (low <= high) {
            int mid = (low + high) / 2;
  
            // If currnet element in the suffix_min
            // is less than a[i] then move right
            if (suffix_min[mid] < a[i]) {
                ans = mid;
                low = mid + 1;
            }
            else
                high = mid - 1;
        }
  
        // Print the required answer
        cout << ans << " ";
    }
}
  
// Driver code
int main()
{
    int a[] = { 3, 1, 5, 2, 4 };
    int n = sizeof(a) / sizeof(a[0]);
  
    farthest_min(a, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
      
// Function to find the farthest
// smaller number in the right side
static void farthest_min(int [] a, int n)
{
    // To store minimum element
    // in the range i to n
    int [] suffix_min = new int[n];
      
    suffix_min[n - 1] = a[n - 1];
    for (int i = n - 2; i >= 0; i--)
    {
        suffix_min[i] = Math.min(suffix_min[i + 1], a[i]);
    }
  
    for (int i = 0; i < n; i++)
    {
        int low = i + 1, high = n - 1, ans = -1;
  
        while (low <= high) 
        {
            int mid = (low + high) / 2;
  
            // If currnet element in the suffix_min
            // is less than a[i] then move right
            if (suffix_min[mid] < a[i])
            {
                ans = mid;
                low = mid + 1;
            }
            else
                high = mid - 1;
        }
  
        // Print the required answer
        System.out.print(ans + " ");
    }
}
  
// Driver code
public static void main (String[] args)
{
    int [] a = { 3, 1, 5, 2, 4 };
    int n = a.length;
  
    farthest_min(a, n);
}
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to find the farthest
# smaller number in the right side
def farthest_min(a, n):
      
    # To store minimum element
    # in the range i to n
    suffix_min = [0 for i in range(n)]
    suffix_min[n - 1] = a[n - 1]
    for i in range(n - 2, -1, -1):
        suffix_min[i] = min(suffix_min[i + 1], a[i])
  
    for i in range(n):
        low = i + 1
        high = n - 1
        ans = -1
  
        while (low <= high):
            mid = (low + high) // 2
  
            # If currnet element in the suffix_min
            # is less than a[i] then move right
            if (suffix_min[mid] < a[i]):
                ans = mid
                low = mid + 1
            else:
                high = mid - 1
  
        # Prthe required answer
        print(ans, end = " ")
  
# Driver code
a = [3, 1, 5, 2, 4]
n = len(a)
  
farthest_min(a, n)
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
class GFG
{
      
// Function to find the farthest
// smaller number in the right side
static void farthest_min(int [] a, int n)
{
    // To store minimum element
    // in the range i to n
    int [] suffix_min = new int[n];
      
    suffix_min[n - 1] = a[n - 1];
    for (int i = n - 2; i >= 0; i--) 
    {
        suffix_min[i] = Math.Min(suffix_min[i + 1], a[i]);
    }
  
    for (int i = 0; i < n; i++)
    {
        int low = i + 1, high = n - 1, ans = -1;
  
        while (low <= high)
        {
            int mid = (low + high) / 2;
  
            // If currnet element in the suffix_min
            // is less than a[i] then move right
            if (suffix_min[mid] < a[i]) 
            {
                ans = mid;
                low = mid + 1;
            }
            else
                high = mid - 1;
        }
  
        // Print the required answer
        Console.Write(ans + " ");
    }
}
  
// Driver code
public static void Main ()
{
    int [] a = { 3, 1, 5, 2, 4 };
    int n = a.Length;
  
    farthest_min(a, n);
}
}
  
// This code is contributed by ihritik

chevron_right


Output:

3 -1 4 -1 -1


My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : mohit kumar 29, ihritik