# Find the farthest smaller number in the right side

Given an array arr[] of size N. For every element in the array, the task is to find the index of the farthest element in the array to the right which is smaller than the current element. If no such number exists then print -1.

Examples:

Input: arr[] = {3, 1, 5, 2, 4}
Output: 3 -1 4 -1 -1
arr is the farthest smallest element to the right of arr.
arr is the farthest smallest element to the right of arr.
And for the rest of the elements, there is no smaller element to their right.

Input: arr[] = {1, 2, 3, 4, 0}
Output: 4 4 4 4 -1

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: An efficient approach is to create a suffix_min[] array where suffix_min[i] stores the minimum element from the subarray arr[i … N – 1]. Now for any element arr[i], binary search can be used on the subarray suffix_min[i + 1 … N – 1] to find the farthest smallest element to the right of arr[i].

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the farthest ` `// smaller number in the right side ` `void` `farthest_min(``int` `a[], ``int` `n) ` `{ ` `    ``// To store minimum element ` `    ``// in the range i to n ` `    ``int` `suffix_min[n]; ` `    ``suffix_min[n - 1] = a[n - 1]; ` `    ``for` `(``int` `i = n - 2; i >= 0; i--) { ` `        ``suffix_min[i] = min(suffix_min[i + 1], a[i]); ` `    ``} ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``int` `low = i + 1, high = n - 1, ans = -1; ` ` `  `        ``while` `(low <= high) { ` `            ``int` `mid = (low + high) / 2; ` ` `  `            ``// If currnet element in the suffix_min ` `            ``// is less than a[i] then move right ` `            ``if` `(suffix_min[mid] < a[i]) { ` `                ``ans = mid; ` `                ``low = mid + 1; ` `            ``} ` `            ``else` `                ``high = mid - 1; ` `        ``} ` ` `  `        ``// Print the required answer ` `        ``cout << ans << ``" "``; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 3, 1, 5, 2, 4 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` ` `  `    ``farthest_min(a, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` `     `  `// Function to find the farthest ` `// smaller number in the right side ` `static` `void` `farthest_min(``int` `[] a, ``int` `n) ` `{ ` `    ``// To store minimum element ` `    ``// in the range i to n ` `    ``int` `[] suffix_min = ``new` `int``[n]; ` `     `  `    ``suffix_min[n - ``1``] = a[n - ``1``]; ` `    ``for` `(``int` `i = n - ``2``; i >= ``0``; i--) ` `    ``{ ` `        ``suffix_min[i] = Math.min(suffix_min[i + ``1``], a[i]); ` `    ``} ` ` `  `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``int` `low = i + ``1``, high = n - ``1``, ans = -``1``; ` ` `  `        ``while` `(low <= high)  ` `        ``{ ` `            ``int` `mid = (low + high) / ``2``; ` ` `  `            ``// If currnet element in the suffix_min ` `            ``// is less than a[i] then move right ` `            ``if` `(suffix_min[mid] < a[i]) ` `            ``{ ` `                ``ans = mid; ` `                ``low = mid + ``1``; ` `            ``} ` `            ``else` `                ``high = mid - ``1``; ` `        ``} ` ` `  `        ``// Print the required answer ` `        ``System.out.print(ans + ``" "``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `[] a = { ``3``, ``1``, ``5``, ``2``, ``4` `}; ` `    ``int` `n = a.length; ` ` `  `    ``farthest_min(a, n); ` `} ` `} ` ` `  `// This code is contributed by ihritik `

## Python3

 `# Python3 implementation of the approach ` ` `  `# Function to find the farthest ` `# smaller number in the right side ` `def` `farthest_min(a, n): ` `     `  `    ``# To store minimum element ` `    ``# in the range i to n ` `    ``suffix_min ``=` `[``0` `for` `i ``in` `range``(n)] ` `    ``suffix_min[n ``-` `1``] ``=` `a[n ``-` `1``] ` `    ``for` `i ``in` `range``(n ``-` `2``, ``-``1``, ``-``1``): ` `        ``suffix_min[i] ``=` `min``(suffix_min[i ``+` `1``], a[i]) ` ` `  `    ``for` `i ``in` `range``(n): ` `        ``low ``=` `i ``+` `1` `        ``high ``=` `n ``-` `1` `        ``ans ``=` `-``1` ` `  `        ``while` `(low <``=` `high): ` `            ``mid ``=` `(low ``+` `high) ``/``/` `2` ` `  `            ``# If currnet element in the suffix_min ` `            ``# is less than a[i] then move right ` `            ``if` `(suffix_min[mid] < a[i]): ` `                ``ans ``=` `mid ` `                ``low ``=` `mid ``+` `1` `            ``else``: ` `                ``high ``=` `mid ``-` `1` ` `  `        ``# Print the required answer ` `        ``print``(ans, end ``=` `" "``) ` ` `  `# Driver code ` `a ``=` `[``3``, ``1``, ``5``, ``2``, ``4``] ` `n ``=` `len``(a) ` ` `  `farthest_min(a, n) ` ` `  `# This code is contributed by Mohit Kumar `

## C#

 `// C# implementation of the approach ` `using` `System; ` `class` `GFG ` `{ ` `     `  `// Function to find the farthest ` `// smaller number in the right side ` `static` `void` `farthest_min(``int` `[] a, ``int` `n) ` `{ ` `    ``// To store minimum element ` `    ``// in the range i to n ` `    ``int` `[] suffix_min = ``new` `int``[n]; ` `     `  `    ``suffix_min[n - 1] = a[n - 1]; ` `    ``for` `(``int` `i = n - 2; i >= 0; i--)  ` `    ``{ ` `        ``suffix_min[i] = Math.Min(suffix_min[i + 1], a[i]); ` `    ``} ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``int` `low = i + 1, high = n - 1, ans = -1; ` ` `  `        ``while` `(low <= high) ` `        ``{ ` `            ``int` `mid = (low + high) / 2; ` ` `  `            ``// If currnet element in the suffix_min ` `            ``// is less than a[i] then move right ` `            ``if` `(suffix_min[mid] < a[i])  ` `            ``{ ` `                ``ans = mid; ` `                ``low = mid + 1; ` `            ``} ` `            ``else` `                ``high = mid - 1; ` `        ``} ` ` `  `        ``// Print the required answer ` `        ``Console.Write(ans + ``" "``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main () ` `{ ` `    ``int` `[] a = { 3, 1, 5, 2, 4 }; ` `    ``int` `n = a.Length; ` ` `  `    ``farthest_min(a, n); ` `} ` `} ` ` `  `// This code is contributed by ihritik `

Output:

```3 -1 4 -1 -1
```

My Personal Notes arrow_drop_up pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.