Tree with N nodes and K leaves such that distance between farthest leaves is minimized

Given N and K, print a tree such that the tree has no more than K leaf nodes and every other node has at least two nodes connected to it. The task is to build a tree of N nodes exactly in such a way that the distance between the farthest leaf nodes is minimized. Print the minimized distance also.

Note: There can be multiple trees.

Examples:



Input: N = 5, K = 3
Output: Distance = 3
The tree is:
1 2
2 3
3 4
3 5

Input: N = 3, K = 2
Output: Distance = 2
The tree is:
1 2
2 3

Approach:

  • Initially, the tree will have k-1 nodes connected to 1.
  • Then connect one node to all the k-1 nodes one by one.
  • If nodes are left, keep connecting them to the leaf nodes one by one.

The diagrammatic representation of how to build the tree will make things more clear. In the image below, K = 6 and for any number N has been demonstrated. The nodes in yellow are the leaf nodes.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program of above approach 
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the distance
// and the tree
void buildTree(int n, int k)
{
    int ans = 2 * ((n - 1) / k) + min((n - 1) % k, 2);
    cout << "Distance = " << ans;
  
    cout << "\nThe tree is:\n";
  
    // print all K-1 leaf nodes attached with 1
    for (int i = 2; i <= k; i++) {
        cout << "1 " << i << endl;
    }
  
    // Join nodes to from other left nodes
    // the last node thus will be the left out leaf node
    for (int i = k + 1; i <= n; i++) {
        cout << i << " " << (i - k) << endl;
    }
}
  
// Driver Code
int main()
{
    int n = 5, k = 3;
  
    buildTree(n, k);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program of above approach 
import java.util.*;
import java.lang.*;
  
// Function to print the distance
// and the tree
class GFG
{
public void buildTree(int n, int k)
{
    int ans = 2 * ((n - 1) / k) + 
            Math.min((n - 1) % k, 2);
    System.out.println("Distance = " + ans);
  
    System.out.println("The tree is: ");
  
    // print all K-1 leaf nodes 
    // attached with 1
    for (int i = 2; i <= k; i++) 
    {
        System.out.println( "1 " + i );
    }
  
    // Join nodes to from other left 
    // nodes the last node thus will 
    // be the left out leaf node
    for (int i = k + 1; i <= n; i++) 
    {
        System.out.println( i + " "
                        (i - k));
    }
}
  
// Driver Code
public static void main(String args[])
{
    GFG g = new GFG();
    int n = 5, k = 3;
  
    g.buildTree(n, k);
}
}
  
// This code is contributed 
// by Akanksha Rai(Abby_akku)

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program of above approach 
  
# Function to print the distance 
# and the tree 
def buildTree(n, k):
  
    ans = (2 * ((n - 1) // k) +
            min((n - 1) % k, 2)) 
    print("Distance = ", ans )
  
    print("The tree is:")
  
    # print all K-1 leaf nodes 
    # attached with 1 
    for i in range(2, k + 1): 
        print("1 ", i) 
      
    # Join nodes to from other left nodes 
    # the last node thus will be the 
    # left out leaf node 
    for i in range(k + 1, n + 1): 
        print(i, "", (i - k)) 
  
# Driver Code 
if __name__ == '__main__':
    n = 5
    k = 3
    buildTree(n, k) 
      
# This code is contributed
# by SHUBHAMSINGH10

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program of above approach 
using System;
  
// Function to print the distance
// and the tree
class GFG
{
public void buildTree(int n, int k)
{
    int ans = 2 * ((n - 1) / k) + 
        Math.Min((n - 1) % k, 2);
    Console.WriteLine("Distance = " + ans);
  
    Console.WriteLine ("The tree is: ");
  
    // print all K-1 leaf nodes 
    // attached with 1
    for (int i = 2; i <= k; i++) 
    {
        Console.WriteLine( "1 " + i );
    }
  
    // Join nodes to from other left 
    // nodes the last node thus will 
    // be the left out leaf node
    for (int i = k + 1; i <= n; i++) 
    {
        Console.WriteLine ( i + " "
                        (i - k));
    }
}
  
// Driver Code
public static void Main()
{
    GFG g = new GFG();
    int n = 5, k = 3;
  
    g.buildTree(n, k);
}
}
  
// This code is contributed by Soumik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program of above approach 
  
// Function to print the distance
// and the tree
function buildTree($n, $k)
{
    $ans = (2 * (int)(($n - 1) / $k) + 
              min(($n - 1) % $k, 2));
    echo "Distance = " . $ans;
  
    echo "\nThe tree is:\n";
  
    // print all K-1 leaf nodes 
    // attached with 1
    for ($i = 2; $i <= $k; $i++) 
    {
        echo "1 " . $i . "\n";
    }
  
    // Join nodes to from other left nodes
    // the last node thus will be the left 
    // out leaf node
    for ($i = $k + 1; $i <= $n; $i++) 
    {
        echo $i . " " . ($i - $k) . "\n";
    }
}
  
// Driver Code
$n = 5; $k = 3;
  
buildTree($n, $k);
  
// This code is contributed
// by Akanksha Rai
?>

chevron_right


Output:

Distance = 3
The tree is:
1 2
1 3
4 1
5 2


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.