Open In App
Related Articles

Find the deleted value from the array when average of original elements is given

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array of length N + K. Also given the average avg of all the elements of the array. If an element that appears exactly K time got removed from the array (all the occurrences) and the resultant array is given, the task is to find the element X. Note that if X is not an integer then print -1.
Examples: 

Input: arr[] = {2, 7, 3}, K = 3, avg = 4 
Output:
The original array was {2, 7, 3, 4, 4, 4} 
where 4 which occurred thrice was deleted. 
(2 + 7 + 3 + 4 + 4 + 4) / 6 = 4

Input: arr[] = {5, 2, 3}, K = 4, avg = 7; 
Output: -1 
The required element is 9.75 which is not an integer. 

Approach:  

  • Find the sum of the array elements and store it in a variable sum.
  • Since X appeared K times then the sum of the original array will be sumOrg = sum + (X * K).
  • And the average is given to be avg i.e. avg = sumOrg / (N + K).
  • Now, X can be easily calculated as X = ((avg * (N + K)) – sum) / K

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the missing element
int findMissing(int arr[], int n, int k, int avg)
{
 
    // Find the sum of the array elements
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += arr[i];
    }
 
    // The numerator and the denominator
    // of the equation
    int num = (avg * (n + k)) - sum;
    int den = k;
 
    // If not divisible then X is
    // not an integer
    // it is a floating point number
    if (num % den != 0)
        return -1;
 
    // Return X
    return (num / den);
}
 
// Driver code
int main()
{
    int k = 3, avg = 4;
    int arr[] = { 2, 7, 3 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findMissing(arr, n, k, avg);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the missing element
    static int findMissing(int arr[], int n,
                           int k, int avg)
    {
     
        // Find the sum of the array elements
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
            sum += arr[i];
        }
     
        // The numerator and the denominator
        // of the equation
        int num = (avg * (n + k)) - sum;
        int den = k;
     
        // If not divisible then X is
        // not an integer
        // it is a floating point number
        if (num % den != 0)
            return -1;
     
        // Return X
        return (int)(num / den);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int k = 3, avg = 4;
        int arr[] = { 2, 7, 3 };
        int n = arr.length;
     
        System.out.println(findMissing(arr, n, k, avg));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the approach
 
# Function to return the missing element
def findMissing(arr, n, k, avg):
 
    # Find the sum of the array elements
    sum = 0;
    for i in range(n):
        sum += arr[i];
     
    # The numerator and the denominator
    # of the equation
    num = (avg * (n + k)) - sum;
    den = k;
 
    # If not divisible then X is
    # not an integer
    # it is a floating point number
    if (num % den != 0):
        return -1;
 
    # Return X
    return (int)(num / den);
 
# Driver code
k = 3; avg = 4;
arr = [2, 7, 3] ;
n = len(arr);
 
print(findMissing(arr, n, k, avg));
 
# This code is contributed by 29AjayKumar

C#




// C# implementation of above approach
using System;
     
class GFG
{
     
    // Function to return the missing element
    static int findMissing(int []arr, int n,
                           int k, int avg)
    {
     
        // Find the sum of the array elements
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
            sum += arr[i];
        }
     
        // The numerator and the denominator
        // of the equation
        int num = (avg * (n + k)) - sum;
        int den = k;
     
        // If not divisible then X is
        // not an integer
        // it is a floating point number
        if (num % den != 0)
            return -1;
     
        // Return X
        return (int)(num / den);
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int k = 3, avg = 4;
        int []arr = { 2, 7, 3 };
        int n = arr.Length;
     
        Console.WriteLine(findMissing(arr, n, k, avg));
    }
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// Javascript implementation of the
// above approach
 
// Function to return the missing element
function findMissing(arr, n, k, avg)
{
  
    // Find the sum of the array elements
    var sum = 0;
    for (var i = 0; i < n; i++) {
        sum += arr[i];
    }
  
    // The numerator and the denominator
    // of the equation
    var num = (avg * (n + k)) - sum;
    var den = k;
  
    // If not divisible then X is
    // not an integer
    // it is a floating point number
    if (num % den != 0)
        return -1;
  
    // Return X
    return (Math.floor(num / den));
}
 
// Driver code
var k = 3;
var avg = 4;
var arr = [ 2, 7, 3 ];
var n = arr.length;
document.write(findMissing(arr, n, k, avg));
 
// This code is contributed by ShubhamSingh10
</script>

Output: 

4

 

Time Complexity: O(n), where n is the size of the given array.
Auxiliary Space: O(1)


Last Updated : 21 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials