Open In App
Related Articles

Find the smallest number whose digits multiply to a given number n

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number ‘n’, find the smallest number ‘p’ such that if we multiply all digits of ‘p’, we get ‘n’. The result ‘p’ should have minimum two digits.
Examples: 
 

Input:  n = 36
Output: p = 49 
// Note that 4*9 = 36 and 49 is the smallest such number

Input:  n = 100
Output: p = 455
// Note that 4*5*5 = 100 and 455 is the smallest such number

Input: n = 1
Output:p = 11
// Note that 1*1 = 1

Input: n = 13
Output: Not Possible

 

For a given n, following are the two cases to be considered. 
Case 1: n < 10 When n is smaller than 10, the output is always n+10. For example for n = 7, the output is 17. For n = 9, output is 19.
Case 2: n >= 10 Find all factors of n which are between 2 and 9 (both inclusive). The idea is to start searching from 9 so that the number of digits in the result is minimized. For example, 9 is preferred over 33 and 8 is preferred over 24. 
Store all found factors in an array. The array would contain digits in non-increasing order, so finally print the array in reverse order.
Following is the implementation of above concept. 
 

C++




#include<bits/stdc++.h>
using namespace std;
 
// Maximum number of digits in output
#define MAX 50
 
// prints the smallest number
// whose digits multiply to n
void findSmallest(int n)
{
    int i, j = 0;
     
    // To store digits of result
    // in reverse order
    int res[MAX];
 
    // Case 1: If number is smaller than 10
    if (n < 10)
    {
        cout << n + 10;
        return;
    }
 
    // Case 2: Start with 9 and
    // try every possible digit
    for (i = 9; i > 1; i--)
    {
        // If current digit divides n, then store all
        // occurrences of current digit in res
        while (n % i == 0)
        {
            n = n / i;
            res[j] = i;
            j++;
        }
    }
 
    // If n could not be broken
    // in form of digits (prime factors
    // of n are greater than 9)
    if (n > 10)
    {
        cout << "Not possible";
        return;
    }
 
    // Print the result array in reverse order
    for (i = j - 1; i >= 0; i--)
        cout << res[i];
}
 
// Driver Code
int main()
{
    findSmallest(7);
    cout << "\n";
 
    findSmallest(36);
    cout << "\n";
 
    findSmallest(13);
    cout << "\n";
 
    findSmallest(100);
    return 0;
}
 
// This code is contributed by Code_Mech


C




#include<stdio.h>
 
// Maximum number of digits in output
#define MAX 50
 
// prints the smallest number whose digits multiply to n
void findSmallest(int n)
{
    int i, j=0;
    int res[MAX]; // To store digits of result in reverse order
 
    // Case 1: If number is smaller than 10
    if (n < 10)
    {
        printf("%d", n+10);
        return;
    }
 
    // Case 2: Start with 9 and try every possible digit
    for (i=9; i>1; i--)
    {
        // If current digit divides n, then store all
        // occurrences of current digit in res
        while (n%i == 0)
        {
            n = n/i;
            res[j] = i;
            j++;
        }
    }
 
    // If n could not be broken in form of digits (prime factors of n
    // are greater than 9)
    if (n > 10)
    {
        printf("Not possible");
        return;
    }
 
    // Print the result array in reverse order
    for (i=j-1; i>=0; i--)
        printf("%d", res[i]);
}
 
// Driver program to test above function
int main()
{
    findSmallest(7);
    printf("\n");
 
    findSmallest(36);
    printf("\n");
 
    findSmallest(13);
    printf("\n");
 
    findSmallest(100);
    return 0;
}


Java




// Java program to find the smallest number whose
// digits multiply to a given number n
 
import java.io.*;
 
class Smallest
{
    // Function to prints the smallest number whose
    // digits multiply to n
    static void findSmallest(int n)
    {
        int i, j=0;
        int MAX = 50;
        // To store digits of result in reverse order
        int[] res = new int[MAX];
  
        // Case 1: If number is smaller than 10
        if (n < 10)
        {
            System.out.println(n+10);
            return;
        }
  
        // Case 2: Start with 9 and try every possible digit
        for (i=9; i>1; i--)
        {
            // If current digit divides n, then store all
            // occurrences of current digit in res
            while (n%i == 0)
            {
                n = n/i;
                res[j] = i;
                j++;
            }
        }
  
        // If n could not be broken in form of digits (prime factors of n
        // are greater than 9)
        if (n > 10)
        {
            System.out.println("Not possible");
            return;
        }
  
        // Print the result array in reverse order
        for (i=j-1; i>=0; i--)
            System.out.print(res[i]);
        System.out.println();
    }
     
    // Driver program
    public static void main (String[] args)
    {
        findSmallest(7);
        findSmallest(36);
        findSmallest(13);
        findSmallest(100);
    }
}
 
// Contributed by Pramod Kumar


Python3




# Python code to find the smallest number
# whose digits multiply to give n
 
# function to print the smallest number whose
# digits multiply to n
def findSmallest(n):
    # Case 1 - If the number is smaller than 10
    if n < 10:
        print (n+10)
        return
     
    # Case 2 - Start with 9 and try every possible digit
    res = [] # to sort digits
    for i in range(9,1,-1):
        # If current digit divides n, then store all
        # occurrences of current digit in res
        while n % i == 0:
            n = n / i
            res.append(i)
     
    # If n could not be broken in the form of digits
    # prime factors of  n are greater than 9
     
    if n > 10:
        print ("Not Possible")
        return
         
    # Print the number from result array in reverse order
    n = res[len(res)-1]
    for i in range(len(res)-2,-1,-1):
        n = 10 * n + res[i]
    print (n)
     
# Driver Code
findSmallest(7)
 
findSmallest(36)
 
findSmallest(13)
 
findSmallest(100)
 
# This code is contributed by Harshit Agrawal


C#




// C# program to find the smallest number whose
// digits multiply to a given number n
using System;
 
class GFG {
     
    // Function to prints the smallest number
    // whose digits multiply to n
    static void findSmallest(int n)
    {
         
        int i, j=0;
        int MAX = 50;
         
        // To store digits of result in
        // reverse order
        int []res = new int[MAX];
 
        // Case 1: If number is smaller than 10
        if (n < 10)
        {
            Console.WriteLine(n + 10);
            return;
        }
 
        // Case 2: Start with 9 and try every
        // possible digit
        for (i = 9; i > 1; i--)
        {
             
            // If current digit divides n, then
            // store all occurrences of current
            // digit in res
            while (n % i == 0)
            {
                n = n / i;
                res[j] = i;
                j++;
            }
        }
 
        // If n could not be broken in form of
        // digits (prime factors of n
        // are greater than 9)
        if (n > 10)
        {
            Console.WriteLine("Not possible");
            return;
        }
 
        // Print the result array in reverse order
        for (i = j-1; i >= 0; i--)
            Console.Write(res[i]);
             
        Console.WriteLine();
    }
     
    // Driver program
    public static void Main ()
    {
        findSmallest(7);
        findSmallest(36);
        findSmallest(13);
        findSmallest(100);
    }
}
 
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program to find the
// smallest number whose
// digits multiply to a
// given number n prints the
// smallest number whose digits
// multiply to n
 
function findSmallest($n)
{
     
    // To store digits of
    // result in reverse order
    $i;
    $j = 0;
    $res;
 
    // Case 1: If number is
    // smaller than 10
    if ($n < 10)
    {
        echo $n + 10;
        return;
    }
 
    // Case 2: Start with 9 and
    // try every possible digit
    for ($i = 9; $i > 1; $i--)
    {
         
        // If current digit divides
        // n, then store all
        // occurrences of current
        // digit in res
        while ($n % $i == 0)
        {
            $n = $n / $i;
            $res[$j] = $i;
            $j++;
        }
    }
 
    // If n could not be broken
    // in form of digits
    // (prime factors of n
    // are greater than 9)
    if ($n > 10)
    {
        echo "Not possible";
        return;
    }
 
    // Print the result
    // array in reverse order
    for ($i = $j - 1; $i >= 0; $i--)
        echo $res[$i];
}
 
    // Driver Code
    findSmallest(7);
    echo "\n";
 
    findSmallest(36);
     
    echo "\n";
 
    findSmallest(13);
    echo "\n";
 
    findSmallest(100);
 
// This code is contributed by ajit
?>


Javascript




<script>
 
// Javascript program to find the smallest number whose 
// digits multiply to a given number n 
 
// Maximum number of digits in output 
 
// prints the smallest number
// whose digits multiply to n
function findSmallest(n)
{
    let i, j = 0;
     
    // To store digits of result
    // in reverse order
    let res = new Array(50);
 
    // Case 1: If number is smaller than 10
    if (n < 10)
    {
        document.write(n + 10);
        return;
    }
 
    // Case 2: Start with 9 and
    // try every possible digit
    for (i = 9; i > 1; i--)
    {
        // If current digit divides n, then store all
        // occurrences of current digit in res
        while (n % i == 0)
        {
            n = Math.floor(n / i);
            res[j] = i;
            j++;
        }
    }
 
    // If n could not be broken
    // in form of digits (prime factors
    // of n are greater than 9)
    if (n > 10)
    {
        document.write("Not possible");
        return;
    }
 
    // Print the result array in reverse order
    for (i = j - 1; i >= 0; i--)
        document.write(res[i]);
}
 
// Driver Code
 
    findSmallest(7);
    document.write("<br>");
 
    findSmallest(36);
    document.write("<br>");
  
 
    findSmallest(13);
    document.write("<br>");
 
 
    findSmallest(100);
     
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

17
49
Not possible
455 

Time Complexity: O(log2n * 10)

Auxiliary Space: O(MAX)

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 17 Jan, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials