# Find product of prime numbers between 1 to n

Given a number n, we need to find the product of all prime numbers between 1 to n.

Examples:

```Input: 5
Output: 30
Explanation: product of prime numbers between 1 to 5 is 2 * 3 * 5 = 30

Input : 7
Output : 210
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Using Sieve of Eratosthenes to find all prime numbers from 1 to n then compute the product.

Following is the algorithm to find all the prime numbers less than or equal to a given integer n by Eratosthenes’ method:

1. Create a list of consecutive integers from 2 to n: (2, 3, 4, …,  n).
2. Initially, let p equal 2, the first prime number.
3. Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These numbers will be 2p, 3p, 4p, etc.; note that some of them may have already been marked.
4. Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.

When the algorithm terminates, all the numbers in the list that are not marked are prime and using a loop we compute the product of prime numbers.

## C++

 `// CPP Program to find product ` `// of prime numbers between 1 to n ` `#include ` `using` `namespace` `std; ` ` `  `// Returns product of primes in range from ` `// 1 to n. ` `long` `ProdOfPrimes(``int` `n) ` `{ ` `    ``// Array to store prime numbers ` `    ``bool` `prime[n + 1]; ` ` `  `    ``// Create a boolean array "prime[0..n]" ` `    ``// and initialize all entries it as true. ` `    ``// A value in prime[i] will finally be ` `    ``// false if i is Not a prime, else true. ` `    ``memset``(prime, ``true``, n + 1); ` ` `  `    ``for` `(``int` `p = 2; p * p <= n; p++) { ` ` `  `        ``// If prime[p] is not changed, then ` `        ``// it is a prime ` `        ``if` `(prime[p] == ``true``) { ` ` `  `            ``// Update all multiples of p ` `            ``for` `(``int` `i = p * 2; i <= n; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` ` `  `    ``// Return product of primes generated ` `    ``// through Sieve. ` `    ``long` `prod = 1; ` `    ``for` `(``int` `i = 2; i <= n; i++) ` `        ``if` `(prime[i]) ` `            ``prod *= i; ` `    ``return` `prod; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 10; ` `    ``cout << ProdOfPrimes(n); ` `    ``return` `0; ` `} `

## Java

 `// Java Program to find product ` `// of prime numbers between 1 to n ` `import` `java.util.Arrays; ` ` `  `class` `GFG { ` `     `  `    ``// Returns product of primes in range from ` `    ``// 1 to n. ` `    ``static` `long` `ProdOfPrimes(``int` `n) ` `    ``{ ` `               `  `        ``// Array to store prime numbers ` `        ``boolean` `prime[]=``new` `boolean``[n + ``1``]; ` `     `  `        ``// Create a boolean array "prime[0..n]" ` `        ``// and initialize all entries it as true. ` `        ``// A value in prime[i] will finally be ` `        ``// false if i is Not a prime, else true. ` `        ``Arrays.fill(prime, ``true``); ` `     `  `        ``for` `(``int` `p = ``2``; p * p <= n; p++) { ` `     `  `            ``// If prime[p] is not changed, then ` `            ``// it is a prime ` `            ``if` `(prime[p] == ``true``) { ` `     `  `                ``// Update all multiples of p ` `                ``for` `(``int` `i = p * ``2``; i <= n; i += p) ` `                    ``prime[i] = ``false``; ` `            ``} ` `        ``} ` `     `  `        ``// Return product of primes generated ` `        ``// through Sieve. ` `        ``long` `prod = ``1``; ` ` `  `        ``for` `(``int` `i = ``2``; i <= n; i++) ` `            ``if` `(prime[i]) ` `                ``prod *= i; ` ` `  `        ``return` `prod; ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `         `  `        ``int` `n = ``10``; ` `         `  `        ``System.out.print(ProdOfPrimes(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python3

 `# Python3 Program to find product ` `# of prime numbers between 1 to n ` ` `  `# Returns product of primes  ` `# in range from 1 to n. ` `def` `ProdOfPrimes(n): ` ` `  `    ``# Array to store prime numbers ` `    ``prime ``=` `[``True` `for` `i ``in` `range``(n ``+` `1``)] ` ` `  `    ``# Create a boolean array "prime[0..n]" ` `    ``# and initialize all entries it as true. ` `    ``# A value in prime[i] will finally be ` `    ``# false if i is Not a prime, else true. ` `    ``p ``=` `2` `    ``while``(p ``*` `p <``=` `n):  ` ` `  `        ``# If prime[p] is not changed,  ` `        ``# then it is a prime ` `        ``if` `(prime[p] ``=``=` `True``):  ` ` `  `            ``# Update all multiples of p ` `            ``i ``=` `p ``*` `2` `            ``while``(i <``=` `n): ` `                ``prime[i] ``=` `False` `                ``i ``+``=` `p ` `        ``p ``+``=` `1` ` `  `    ``# Return product of primes  ` `    ``# generated through Sieve. ` `    ``prod ``=` `1` `    ``for` `i ``in` `range``(``2``, n``+``1``): ` `        ``if` `(prime[i]): ` `            ``prod ``*``=` `i ` `    ``return` `prod ` ` `  `# Driver code ` `n ``=` `10` `print``(ProdOfPrimes(n)) ` ` `  `# This code is contributed by Anant Agarwal. `

## C#

 `// C# Program to find product of ` `// prime numbers between 1 to n ` `using` `System; ` ` `  `public` `class` `GFG  ` `{ ` `     `  `    ``// Returns product of primes  ` `    ``// in range from 1 to n. ` `    ``static` `long` `ProdOfPrimes(``int` `n) ` `    ``{ ` `                 `  `        ``// Array to store prime numbers ` `        ``bool` `[]prime=``new` `bool``[n + 1]; ` `     `  `        ``// Create a boolean array "prime[0..n]" ` `        ``// and initialize all entries it as true. ` `        ``// A value in prime[i] will finally be ` `        ``// false if i is Not a prime, else true. ` `        ``for``(``int` `i = 0; i < n + 1; i++) ` `            ``prime[i] = ``true``; ` `         `  `        ``for` `(``int` `p = 2; p * p <= n; p++) { ` `     `  `            ``// If prime[p] is not changed, ` `            ``// then it is a prime ` `            ``if` `(prime[p] == ``true``) { ` `     `  `                ``// Update all multiples of p ` `                ``for` `(``int` `i = p * 2; i <= n; i += p) ` `                    ``prime[i] = ``false``; ` `            ``} ` `        ``} ` `     `  `        ``// Return product of primes generated ` `        ``// through Sieve. ` `        ``long` `prod = 1; ` ` `  `        ``for` `(``int` `i = 2; i <= n; i++) ` `            ``if` `(prime[i]) ` `                ``prod *= i; ` ` `  `        ``return` `prod; ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main () ` `    ``{ ` `         `  `        ``int` `n = 10; ` `         `  `        ``Console.Write(ProdOfPrimes(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by Sam007 `

## PHP

 ` `

Output:

```210
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : Sam007, manishshaw1

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.