Skip to content
Related Articles

Related Articles

Improve Article

Find numbers which are multiples of first array and factors of second array

  • Last Updated : 11 Jun, 2021

Given two arrays A[] and B[], the task is to find the integers which are divisible by all the elements of array A[] and divide all the elements of array B[].

Examples:  

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: A[] = {1, 2, 2, 4}, B[] = {16, 32, 64} 
Output: 4 8 16 
4, 8 and 16 are the only numbers that 
are multiples of all the elements of array A[] 
and divide all the elements of array B[]



Input: A[] = {2, 3, 6}, B[] = {42, 84} 
Output: 6 42 
 

Approach: If X is a multiple of all the elements of the first array then X must be a multiple of the LCM of all the elements of the first array. 
Similarly, If X is a factor of all the elements of the second array then it must be a factor of the GCD of all the elements of the second array and such X will exist only if GCD of the second array is divisible by the LCM of the first array. 
If it is divisible then X can be any value from the range [LCM, GCD] which is a multiple of LCM and evenly divides GCD.

Below is the implementation of above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the LCM of two numbers
int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
void findNumbers(int a[], int n, int b[], int m)
{
 
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0) {
        cout << "-1";
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB) {
        if (gcdB % num == 0)
            cout << num << " ";
        num += lcmA;
    }
}
 
// Driver code
int main()
{
 
    int a[] = { 1, 2, 2, 4 };
    int b[] = { 16, 32, 64 };
 
    int n = sizeof(a) / sizeof(a[0]);
    int m = sizeof(b) / sizeof(b[0]);
 
    findNumbers(a, n, b, m);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// Function to return the LCM of two numbers
static int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
static void findNumbers(int a[], int n,
                        int b[], int m)
{
 
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0)
    {
        System.out.print("-1");
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB)
    {
        if (gcdB % num == 0)
            System.out.print(num + " ");
        num += lcmA;
    }
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 1, 2, 2, 4 };
    int b[] = { 16, 32, 64 };
 
    int n = a.length;
    int m = b.length;
 
    findNumbers(a, n, b, m);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
from math import gcd
 
# Function to return the LCM of two numbers
def lcm( x, y) :
     
    temp = (x * y) // gcd(x, y);
    return temp;
 
# Function to print the required numbers
def findNumbers(a, n, b, m) :
 
    # To store the lcm of array a[] elements
    # and the gcd of array b[] elements
    lcmA = 1; __gcdB = 0;
 
    # Finding LCM of first array
    for i in range(n) :
        lcmA = lcm(lcmA, a[i]);
 
    # Finding GCD of second array
    for i in range(m) :
        __gcdB = gcd(__gcdB, b[i]);
 
    # No such element exists
    if (__gcdB % lcmA != 0) :
        print("-1");
        return;
 
    # All the multiples of lcmA which are
    # less than or equal to gcdB and evenly
    # divide gcdB will satisfy the conditions
    num = lcmA;
    while (num <= __gcdB) :
        if (__gcdB % num == 0) :
            print(num, end = " ");
             
        num += lcmA;
 
# Driver code
if __name__ == "__main__" :
 
    a = [ 1, 2, 2, 4 ];
    b = [ 16, 32, 64 ];
     
    n = len(a);
    m = len(b);
     
    findNumbers(a, n, b, m);
     
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG
{
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
}
 
// Function to return the LCM of two numbers
static int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
static void findNumbers(int []a, int n,
                        int []b, int m)
{
 
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0)
    {
        Console.Write("-1");
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB)
    {
        if (gcdB % num == 0)
            Console.Write(num + " ");
        num += lcmA;
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 1, 2, 2, 4 };
    int []b = { 16, 32, 64 };
 
    int n = a.Length;
    int m = b.Length;
 
    findNumbers(a, n, b, m);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find nth centered
// tridecagonal number
function __gcd(a, b)
{
    if (b == 0)
        return a;
         
    return __gcd(b, a % b);
     
}
 
// Function to return the LCM of two numbers
function lcm(x, y)
{
    var temp = (x * y) / __gcd(x, y);
    return temp;
}
 
// Function to print the required numbers
function findNumbers(a, n, b, m)
{
     
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    var lcmA = 1, gcdB = 0;
 
    // Finding LCM of first array
    for(var i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
 
    // Finding GCD of second array
    for(var i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
 
    // No such element exists
    if (gcdB % lcmA != 0)
    {
        document.write("-1");
        return;
    }
 
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    var num = lcmA;
    while (num <= gcdB)
    {
        if (gcdB % num == 0)
            document.write(num + " ");
             
        num += lcmA;
    }
}
 
// Driver code
var a = [ 1, 2, 2, 4 ];
var b = [ 16, 32, 64 ];
 
var n = a.length;
var m = b.length;
 
findNumbers(a, n, b, m);
 
// This code is contributed by Ankita saini
 
</script>
Output: 
4 8 16

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :