Skip to content
Related Articles
Open in App
Not now

Related Articles

Find maximum and minimum element in binary tree without using recursion or stack or queue

Improve Article
Save Article
Like Article
  • Difficulty Level : Hard
  • Last Updated : 04 Aug, 2021
Improve Article
Save Article
Like Article

Given a binary tree. The task is to find out the maximum and minimum element in a binary tree without using recursion or stack or queue i.e, space complexity should be O(1). 

Examples: 

Input : 
                       12
                     /     \
                   13       10
                          /     \
                       14       15
                      /   \     /  \
                     21   24   22   23

Output : Max element : 24
         Min element : 10

Input : 
                       12
                     /     \
                  19        82
                 /        /     \
               41       15       95
                 \     /         /  \
                  2   21        7   16

Output : Max element : 95
         Min element : 2

Prerequisite : Inorder Tree Traversal without recursion and without stack

Approach : 
1. Initialize current as root 
2. Take to variable max and min 
3. While current is not NULL 

  • If the current does not have left child 
    • Update variable max and min with current’s data if required
    • Go to the right, i.e., current = current->right
  • Else 
    • Make current as the right child of the rightmost 
      node in current’s left subtree
    • Go to this left child, i.e., current = current->left

Below is the implementation of the above approach :  

C++




// C++ program find maximum and minimum element
#include <bits/stdc++.h>
using namespace std;
 
// A Tree node
struct Node {
    int key;
    struct Node *left, *right;
};
 
// Utility function to create a new node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    temp->left = temp->right = NULL;
    return (temp);
}
 
 
// Function to print a maximum and minimum element
// in a tree without recursion without stack
void printMinMax(Node* root)
{
     
    if (root == NULL)
    {
        cout << "Tree is empty";
        return;
    }
     
    Node* current = root;
     
    Node* pre;
     
    // Max variable for storing maximum value   
    int max_value = INT_MIN;
     
    // Min variable for storing minimum value   
    int min_value = INT_MAX;
     
     
    while (current != NULL)
    {
        // If left child does nor exists
        if (current->left == NULL)
        {
            max_value = max(max_value, current->key);
            min_value = min(min_value, current->key);
             
            current = current->right;
        }
        else
        {
   
            // Find the inorder predecessor of current
            pre = current->left;
            while (pre->right != NULL && pre->right !=
                                                 current)
                pre = pre->right;
   
            // Make current as the right child
            // of its inorder predecessor
            if (pre->right == NULL)
            {
                pre->right = current;
                current = current->left;
            }
   
            // Revert the changes made in the 'if' part to
            // restore the original tree i.e., fix the
            // right child of predecessor
            else
            {
                pre->right = NULL;
                 
                max_value = max(max_value, current->key);
                min_value = min(min_value, current->key);
             
                current = current->right;
            } // End of if condition pre->right == NULL
             
        } // End of if condition current->left == NULL
         
    } // End of while
     
    // Finally print max and min value
    cout << "Max Value is : " << max_value << endl;
    cout << "Min Value is : " << min_value << endl;
}
 
// Driver Code
int main()
{
    /* 15
      /  \
    19   11
        /  \
       25   5
      / \   / \
    17  3  23  24
 
    Let us create Binary Tree as shown
    above */
 
    Node* root = newNode(15);
    root->left = newNode(19);
    root->right = newNode(11);
 
    root->right->left = newNode(25);
    root->right->right = newNode(5);
 
    root->right->left->left = newNode(17);
    root->right->left->right = newNode(3);
    root->right->right->left = newNode(23);
    root->right->right->right = newNode(24);
     
    // Function call for printing a max
    // and min element in a tree
    printMinMax(root);
 
    return 0;
}

Java




// Java program find maximum and minimum element
class GFG
{
 
// A Tree node
static class Node
{
    int key;
    Node left, right;
};
 
// Utility function to create a new node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return (temp);
}
 
 
// Function to print a maximum and minimum element
// in a tree without recursion without stack
static void printMinMax(Node root)
{
     
    if (root == null)
    {
        System.out.print("Tree is empty");
        return;
    }
     
    Node current = root;
     
    Node pre;
     
    // Max variable for storing maximum value
    int max_value = Integer.MIN_VALUE;
     
    // Min variable for storing minimum value
    int min_value = Integer.MAX_VALUE;
     
     
    while (current != null)
    {
        // If left child does nor exists
        if (current.left == null)
        {
            max_value = Math.max(max_value, current.key);
            min_value = Math.min(min_value, current.key);
             
            current = current.right;
        }
        else
        {
     
            // Find the inorder predecessor of current
            pre = current.left;
            while (pre.right != null && pre.right !=
                                                current)
                pre = pre.right;
     
            // Make current as the right child
            // of its inorder predecessor
            if (pre.right == null)
            {
                pre.right = current;
                current = current.left;
            }
     
            // Revert the changes made in the 'if' part to
            // restore the original tree i.e., fix the
            // right child of predecessor
            else
            {
                pre.right = null;
                 
                max_value = Math.max(max_value, current.key);
                min_value = Math.min(min_value, current.key);
             
                current = current.right;
            } // End of if condition pre.right == null
             
        } // End of if condition current.left == null
         
    } // End of while
     
    // Finally print max and min value
    System.out.print("Max Value is : " + max_value + "\n");
    System.out.print("Min Value is : " + min_value + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
    /* 15
    / \
    19 11
        / \
    25 5
    / \ / \
    17 3 23 24
 
    Let us create Binary Tree as shown
    above */
 
    Node root = newNode(15);
    root.left = newNode(19);
    root.right = newNode(11);
 
    root.right.left = newNode(25);
    root.right.right = newNode(5);
 
    root.right.left.left = newNode(17);
    root.right.left.right = newNode(3);
    root.right.right.left = newNode(23);
    root.right.right.right = newNode(24);
     
    // Function call for printing a max
    // and min element in a tree
    printMinMax(root);
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python program find maximum and minimum element
from sys import maxsize
 
INT_MAX = maxsize
INT_MIN = -maxsize
 
# A Tree node
class Node:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
 
# Function to print a maximum and minimum element
# in a tree without recursion without stack
def printMinMax(root: Node):
    if root is None:
        print("Tree is empty")
        return
 
    current = root
    pre = Node(0)
 
    # Max variable for storing maximum value
    max_value = INT_MIN
 
    # Min variable for storing minimum value
    min_value = INT_MAX
 
    while current is not None:
 
        # If left child does nor exists
        if current.left is None:
            max_value = max(max_value, current.key)
            min_value = min(min_value, current.key)
 
            current = current.right
        else:
 
            # Find the inorder predecessor of current
            pre = current.left
            while pre.right is not None and pre.right != current:
                pre = pre.right
 
            # Make current as the right child
            # of its inorder predecessor
            if pre.right is None:
                pre.right = current
                current = current.left
 
            # Revert the changes made in the 'if' part to
            # restore the original tree i.e., fix the
            # right child of predecessor
            else:
                pre.right = None
                max_value = max(max_value, current.key)
                min_value = min(min_value, current.key)
 
                current = current.right
 
            # End of if condition pre->right == NULL
 
        # End of if condition current->left == NULL
 
    # End of while
 
    # Finally print max and min value
    print("Max value is :", max_value)
    print("Min value is :", min_value)
 
# Driver Code
if __name__ == "__main__":
 
    # /* 15
    # / \
    # 19 11
    #     / \
    # 25 5
    # / \ / \
    # 17 3 23 24
 
    # Let us create Binary Tree as shown
    # above */
 
    root = Node(15)
    root.left = Node(19)
    root.right = Node(11)
 
    root.right.left = Node(25)
    root.right.right = Node(5)
 
    root.right.left.left = Node(17)
    root.right.left.right = Node(3)
    root.right.right.left = Node(23)
    root.right.right.right = Node(24)
 
    # Function call for printing a max
    # and min element in a tree
    printMinMax(root)
 
# This code is contributed by
# sanjeev2552

C#




// C# program find maximum and minimum element
using System;
class GFG
{
 
// A Tree node
class Node
{
    public int key;
    public Node left, right;
};
 
// Utility function to create a new node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to print a maximum and minimum element
// in a tree without recursion without stack
static void printMinMax(Node root)
{
    if (root == null)
    {
        Console.Write("Tree is empty");
        return;
    }
     
    Node current = root;
     
    Node pre;
     
    // Max variable for storing maximum value
    int max_value = int.MinValue;
     
    // Min variable for storing minimum value
    int min_value = int.MaxValue;
     
    while (current != null)
    {
        // If left child does nor exists
        if (current.left == null)
        {
            max_value = Math.Max(max_value,
                                 current.key);
            min_value = Math.Min(min_value,
                                 current.key);
             
            current = current.right;
        }
        else
        {
     
            // Find the inorder predecessor of current
            pre = current.left;
            while (pre.right != null &&
                   pre.right != current)
                pre = pre.right;
     
            // Make current as the right child
            // of its inorder predecessor
            if (pre.right == null)
            {
                pre.right = current;
                current = current.left;
            }
     
            // Revert the changes made in the 'if' part to
            // restore the original tree i.e., fix the
            // right child of predecessor
            else
            {
                pre.right = null;
                 
                max_value = Math.Max(max_value,
                                     current.key);
                min_value = Math.Min(min_value,    
                                     current.key);
             
                current = current.right;
            } // End of if condition pre.right == null
             
        } // End of if condition current.left == null
         
    } // End of while
     
    // Finally print max and min value
    Console.Write("Max Value is : " +
                   max_value + "\n");
    Console.Write("Min Value is : " +
                   min_value + "\n");
}
 
// Driver Code
public static void Main(String[] args)
{
    /* 15
    / \
    19 11
        / \
    25 5
    / \ / \
    17 3 23 24
 
    Let us create Binary Tree as shown
    above */
 
    Node root = newNode(15);
    root.left = newNode(19);
    root.right = newNode(11);
 
    root.right.left = newNode(25);
    root.right.right = newNode(5);
 
    root.right.left.left = newNode(17);
    root.right.left.right = newNode(3);
    root.right.right.left = newNode(23);
    root.right.right.right = newNode(24);
     
    // Function call for printing a max
    // and min element in a tree
    printMinMax(root);
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// Javascript program find maximum
// and minimum element
 
// A Tree node
class Node
{
    constructor()
    {
        this.key = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Utility function to create a new node
function newNode(key)
{
    var temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to print a maximum and minimum
// element in a tree without recursion
// without stack
function printMinMax(root)
{
    if (root == null)
    {
        document.write("Tree is empty");
        return;
    }
     
    var current = root;
    var pre;
     
    // Max variable for storing maximum value
    var max_value = -1000000000;
     
    // Min variable for storing minimum value
    var min_value = 1000000000;
     
    while (current != null)
    {
         
        // If left child does nor exists
        if (current.left == null)
        {
            max_value = Math.max(max_value,
                                 current.key);
            min_value = Math.min(min_value,
                                 current.key);
             
            current = current.right;
        }
        else
        {
             
            // Find the inorder predecessor of current
            pre = current.left;
            while (pre.right != null &&
                   pre.right != current)
                pre = pre.right;
     
            // Make current as the right child
            // of its inorder predecessor
            if (pre.right == null)
            {
                pre.right = current;
                current = current.left;
            }
     
            // Revert the changes made in the 'if'
            // part to restore the original tree
            // i.e., fix the right child of predecessor
            else
            {
                pre.right = null;
                 
                max_value = Math.max(max_value,
                                     current.key);
                min_value = Math.min(min_value,    
                                     current.key);
             
                current = current.right;
            } // End of if condition pre.right == null
             
        } // End of if condition current.left == null
         
    } // End of while
     
    // Finally print max and min value
    document.write("Max Value is : " +
                   max_value + "<br>");
    document.write("Min Value is : " +
                   min_value + "<br>");
}
 
// Driver Code
/* 15
/ \
19 11
    / \
25 5
/ \ / \
17 3 23 24
Let us create Binary Tree as shown
above */
var root = newNode(15);
root.left = newNode(19);
root.right = newNode(11);
root.right.left = newNode(25);
root.right.right = newNode(5);
root.right.left.left = newNode(17);
root.right.left.right = newNode(3);
root.right.right.left = newNode(23);
root.right.right.right = newNode(24);
 
// Function call for printing a max
// and min element in a tree
printMinMax(root);
 
// This code is contributed by noob2000
 
</script>

Output : 

Max Value is : 25
Min Value is : 3

Time Complexity: O(N)
Space complexity: O(1)
 


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!