Open In App

Find largest positive integer x missing from unsorted array such that min(arr[]) < x < max(arr[])

Last Updated : 15 Oct, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given an array arr[] containing integers. The task is to find the largest positive integer x missing from the array such that min(arr[]) < x < max(arr[]).

Examples

Input: arr[] = {2, 3, 7, 6, 8}
Output: 5
Explanation: 5 is the largest positive integer missing from arr[] and 2 < 5 < 8.

Input: arr[] = { 2, 3, -7, 1, 4 }
Output: -1

 

Naive Approach: Sort the array in descending and return the first missing positive number. If none is missing, return -1.

Algorithm:

  1. Initialize variables max_val and min_val to store the maximum and minimum values in the given array, and initialize an array of size (max_val – min_val + 1) with all elements as 0.
  2. Traverse the given array and for each element, if it lies within the range [min_val, max_val], mark the corresponding index in the new array as 1.
  3. Traverse the new array starting from index 1 and find the first index i such that the corresponding element is 0. Return i + min_val as the answer.
  4. If no such index is found, return -1 to indicate that no missing positive integer was found in the given range.

Below is the implementation of the approach:

C++




// C++ code for the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the largest positive integer missing
int largestMissingPositive(int arr[], int n) {
    // Sort the array in descending order
    sort(arr, arr + n, greater<int>());
   
    int max_num = arr[0];
    int min_num = arr[n - 1];
    int missing_num = -1;
 
    // Traverse the sorted array to find the missing number
    for (int i = max_num - 1; i >= min_num + 1; i--) {
        bool found = false;
 
        // Check if the current number is present in the
        // array
        for (int j = 0; j < n; j++) {
            if (arr[j] == i) {
                found = true;
                break;
            }
        }
       
        // If the current number is not present, return it
        if (!found) {
            missing_num = i;
            break;
        }
    }
   
    return missing_num;
}
 
// Driver's code
int main() {
    int arr[] = { 2, 3, 7, 6, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int missing_num = largestMissingPositive(arr, n);
 
    if (missing_num == -1) {
        cout << -1 << endl;
    }
    else {
        cout << missing_num << endl;
    }
 
    return 0;
}


Java




/*package whatever //do not write package name here */
 
import java.util.Arrays;
 
public class Main {
    // Function to find the largest positive integer missing
    static int largestMissingPositive(int[] arr, int n) {
        // Sort the array in descending order
        Arrays.sort(arr);
        int maxNum = arr[n - 1];
        int minNum = arr[0];
        int missingNum = -1;
 
        // Traverse the sorted array to find the missing number
        for (int i = maxNum - 1; i >= minNum + 1; i--) {
            boolean found = false;
 
            // Check if the current number is present in the array
            for (int j = 0; j < n; j++) {
                if (arr[j] == i) {
                    found = true;
                    break;
                }
            }
 
            // If the current number is not present, return it
            if (!found) {
                missingNum = i;
                break;
            }
        }
 
        return missingNum;
    }
 
    // Driver's code
    public static void main(String[] args) {
        int[] arr = { 2, 3, 7, 6, 8 };
        int n = arr.length;
        int missingNum = largestMissingPositive(arr, n);
 
        if (missingNum == -1) {
            System.out.println(-1);
        } else {
            System.out.println(missingNum);
        }
    }
}
 
//This code is contributed by aeroabrar_31


Python3




def largestMissingPositive(arr):
    # Sort the array in descending order
    arr.sort(reverse=True)
    maxNum = arr[0]
    minNum = arr[-1]
    missingNum = -1
 
    # Traverse the sorted array to find the missing number
    for i in range(maxNum - 1, minNum, -1):
        found = False
 
        # Check if the current number is present in the array
        for num in arr:
            if num == i:
                found = True
                break
 
        # If the current number is not present, return it
        if not found:
            missingNum = i
            break
 
    return missingNum
 
# Driver's code
arr = [2, 3, 7, 6, 8]
missingNum = largestMissingPositive(arr)
 
if missingNum == -1:
    print(-1)
else:
    print(missingNum)


C#




using System;
using System.Linq;
 
public class GFG {
    // Function to find the largest positive integer missing
    public static int LargestMissingPositive(int[] arr,
                                             int n)
    {
        // Sort the array in descending order
        Array.Sort(arr, (x, y) => y.CompareTo(x));
 
        int max_num = arr[0];
        int min_num = arr[n - 1];
        int missing_num = -1;
 
        // Traverse the sorted array to find the missing
        // number
        for (int i = max_num - 1; i >= min_num + 1; i--) {
            bool found = false;
 
            // Check if the current number is present in the
            // array
            for (int j = 0; j < n; j++) {
                if (arr[j] == i) {
                    found = true;
                    break;
                }
            }
 
            // If the current number is not present, return
            // it
            if (!found) {
                missing_num = i;
                break;
            }
        }
 
        return missing_num;
    }
 
    public static void Main()
    {
        int[] arr = { 2, 3, 7, 6, 8 };
        int n = arr.Length;
        int missing_num = LargestMissingPositive(arr, n);
 
        if (missing_num == -1) {
            Console.WriteLine(-1);
        }
        else {
            Console.WriteLine(missing_num);
        }
    }
}


Javascript




// JS code for the approach
 
// Function to find the largest positive leteger missing
function largestMissingPositive(arr, n) {
    // Sort the array in descending order
    arr.sort();
    arr.reverse();
   
    let max_num = arr[0];
    let min_num = arr[n - 1];
    let missing_num = -1;
 
    // Traverse the sorted array to find the missing number
    for (let i = max_num - 1; i >= min_num + 1; i--) {
        let found = false;
 
        // Check if the current number is present in the
        // array
        for (let j = 0; j < n; j++) {
            if (arr[j] == i) {
                found = true;
                break;
            }
        }
       
        // If the current number is not present, return it
        if (!found) {
            missing_num = i;
            break;
        }
    }
   
    return missing_num;
}
 
// Driver's code
let arr = [ 2, 3, 7, 6, 8 ];
let n = arr.length;
let missing_num = largestMissingPositive(arr, n);
 
if (missing_num == -1) {
    console.log(-1);
}
else {
    console.log(missing_num);
}


Output

5



Time Complexity: O(N logN) 
Time Complexity: O(1)

Efficient Approach: This problem can be solved by using Hashing. Build a Hashmap of all positive elements in the given array. After building Hashmap, look in the HashMap from reverse, and return the first missing positive number. If none is missing, return -1.

Below is the implementation of the above approach.

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find missing positive integer
int firstMissingPositive(vector<int>& nums)
{
    int n = nums.size();
 
    // Map to store the elements
    map<int, int> m;
    for (int i = 0; i < n; i++) {
        if (m.find(nums[i]) == m.end()) {
            m.insert({ nums[i], 1 });
        }
    }
 
    int ans = 0;
 
    // Traversing the Hashmap from reverse
    for (ans = m.rbegin()->first; ans > 0; ans--) {
        if (m.find(ans) == m.end())
            break;
    }
    return ans;
}
 
// Driver code
int main()
{
    vector<int> arr = { 2, 3, 7, 6, 8 };
    int missing = firstMissingPositive(arr) == 0
                      ? -1
                      : firstMissingPositive(arr);
    cout << missing;
    return 0;
}


Java




// Java program for above approach
import java.util.*;
class GFG
{
 
  // Function to find missing positive integer
  public static int firstMissingPositive(int[] nums)
  {
    int n = nums.length;
 
    // Map to store the elements
    HashMap<Integer, Integer> m = new HashMap<>();
    for (int i = 0; i < n; i++) {
      if (m.containsKey(nums[i]) == false) {
        m.put(nums[i], 1);
      }
    }
    int ans = 0;
 
    for (Map.Entry<Integer, Integer> temp :
         m.entrySet()) {
      ans = Math.max(ans, temp.getKey());
    }
 
    // Traversing the Hashmap from reverse
    for (; ans > 0; ans--) {
      if (m.containsKey(ans) == false)
        break;
    }
    return ans;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int[] arr = { 2, 3, 7, 6, 8 };
    if (firstMissingPositive(arr) == 0)
      System.out.print(-1);
    else
      System.out.print(firstMissingPositive(arr));
  }
}
 
// This code is contributed by Taranpreet


Python3




# Python program for above approach
 
# Function to find missing positive integer
def firstMissingPositive(nums):
    n = len(nums)
 
    # Map to store the elements
    m = {}
    for i in range(n):
        if (nums[i] not in m):
            m[nums[i]] = 1
 
    ans = 0
    for itm in m.keys():
        ans = max(ans, itm)
     
    # Traversing the Hashmap from reverse
    while(ans >= 0):
        if (ans not in m):
            break
        ans -= 1
 
    return ans
 
# Driver code
arr = [2, 3, 7, 6, 8]
missing = -1 if firstMissingPositive(arr) == 0 else firstMissingPositive(arr)
print(missing)
 
# This code is contributed by shinjanpatra


C#




// C# program for above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function to find missing positive integer
  public static int firstMissingPositive(int[] nums)
  {
    int n = nums.Length;
 
    // Map to store the elements
    Dictionary<int, int> m = new Dictionary<int, int>();
    for (int i = 0; i < n; i++) {
      if (m.ContainsKey(nums[i]) == false) {
        m.Add(nums[i], 1);
      }
    }
    int ans = 0;
 
    foreach (KeyValuePair<int, int> temp in
             m) {
      ans = Math.Max(ans, temp.Key);
    }
 
    // Traversing the Hashmap from reverse
    for (; ans > 0; ans--) {
      if (m.ContainsKey(ans) == false)
        break;
    }
    return ans;
  }
 
  // Driver code
  public static void Main(String[] args)
  {
    int[] arr = { 2, 3, 7, 6, 8 };
    if (firstMissingPositive(arr) == 0)
      Console.Write(-1);
    else
      Console.Write(firstMissingPositive(arr));
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
        // JavaScript program for above approach
 
        // Function to find missing positive integer
        const firstMissingPositive = (nums) => {
            let n = nums.length;
 
            // Map to store the elements
            let m = {};
            for (let i = 0; i < n; i++) {
                if (!(nums[i] in m)) {
                    m[nums[i]] = 1;
                }
            }
 
            let ans = 0;
            for (let itm in m) ans = Math.max(ans, itm);
             
            // Traversing the Hashmap from reverse
            for (; ans > 0; ans--) {
                if (!(ans in m))
                    break;
            }
            return ans;
        }
 
        // Driver code
        let arr = [2, 3, 7, 6, 8];
        let missing = firstMissingPositive(arr) == 0
            ? -1
            : firstMissingPositive(arr);
        document.write(missing);
 
    // This code is contributed by rakeshsahni
 
    </script>


 
 

Output

5










 

Time Complexity: O(N) 
Auxiliary Space: O(N)

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads