# Find the first natural number whose factorial is divisible by x

Given a number x, the task is to find first natural number i whose factorial is divisible by x.

Examples :

```Input  : x = 10
Output : 5
5 is the smallest number such that
(5!) % 10 = 0

Input  : x = 16
Output : 6
6 is the smallest number such that
(6!) % 16 = 0
```

## Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

A simple solution is to iterate from 1 to x-1 and for every number i check if i! is divisible by x.

## C++

 `// A simple C++ program to find first natural ` `// number whose factorial divides x. ` `#include ` `using` `namespace` `std; ` ` `  `// Returns first number whose factorial ` `// divides x. ` `int` `firstFactorialDivisibleNumber(``int` `x) ` `{ ` `    ``int` `i = 1; ``// Result ` `    ``int` `fact = 1; ` `    ``for` `(i = 1; i < x; i++) { ` `        ``fact = fact * i; ` `        ``if` `(fact % x == 0) ` `            ``break``; ` `    ``} ` ` `  `    ``return` `i; ` `} ` ` `  `// Driver code ` `int` `main(``void``) ` `{ ` `    ``int` `x = 16; ` `    ``cout << firstFactorialDivisibleNumber(x); ` `    ``return` `0; ` `} `

## Java

 `// A simple Java program to find first natural ` `// number whose factorial divides x ` `class` `GFG { ` ` `  `    ``// Returns first number whose factorial ` `    ``// divides x. ` `    ``static` `int` `firstFactorialDivisibleNumber(``int` `x) ` `    ``{ ` `        ``int` `i = ``1``; ``// Result ` `        ``int` `fact = ``1``; ` `        ``for` `(i = ``1``; i < x; i++) { ` `            ``fact = fact * i; ` `            ``if` `(fact % x == ``0``) ` `                ``break``; ` `        ``} ` ` `  `        ``return` `i; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `x = ``16``; ` `        ``System.out.print(firstFactorialDivisibleNumber(x)); ` `    ``} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python3

 `# A simple python program to find  ` `# first natural number whose  ` `# factorial divides x. ` ` `  `# Returns first number whose  ` `# factorial divides x. ` `def` `firstFactorialDivisibleNumber(x): ` `    ``i ``=` `1``; ``# Result ` `    ``fact ``=` `1``; ` `    ``for` `i ``in` `range``(``1``, x): ` `        ``fact ``=` `fact ``*` `i ` `        ``if` `(fact ``%` `x ``=``=` `0``): ` `            ``break` `    ``return` `i ` ` `  `# Driver code ` `x ``=` `16` `print``(firstFactorialDivisibleNumber(x)) ` ` `  `# This code is contributed  ` `# by 29AjayKumar `

## C#

 `// A simple C# program to find first natural ` `// number whose factorial divides x ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Returns first number whose factorial ` `    ``// divides x. ` `    ``static` `int` `firstFactorialDivisibleNumber(``int` `x) ` `    ``{ ` `        ``int` `i = 1; ``// Result ` `        ``int` `fact = 1; ` `        ``for` `(i = 1; i < x; i++) { ` `            ``fact = fact * i; ` `            ``if` `(fact % x == 0) ` `                ``break``; ` `        ``} ` ` `  `        ``return` `i; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `x = 16; ` ` `  `        ``Console.Write( ` `            ``firstFactorialDivisibleNumber(x)); ` `    ``} ` `} ` ` `  `// This code is contributed by nitin mittal `

## PHP

 ` `

Output :

`6`

If we apply this naive approach, we wouldn’t go above 20! or 21! (long long int will have its upper limit).

A better solution avoids overflow. The solution is based on below observations.

• If i! is divisible by x, then (i+1)!, (i+2)!, … are also divisible by x.
• For a number x, all factorials i! are divisible by x when i >= x.
• If a number x is prime, then no factorial below x can divide it as x cannot be formed with multiplication of smaller numbers.

Below is algorithm

```1) Run a loop for i = 1 to n-1

a) Remove common factors
new_x /= gcd(i, new_x);

b) Check if we found first i.
if (new_x == 1)
break;

2) Return i```

Below is the implementation of above idea :

## CPP

 `// C++ program to find first natural number ` `// whose factorial divides x. ` `#include ` `using` `namespace` `std; ` ` `  `// GCD function to compute the greatest ` `// divisor among a and b ` `int` `gcd(``int` `a, ``int` `b) ` `{ ` `    ``if` `((a % b) == 0) ` `        ``return` `b; ` `    ``return` `gcd(b, a % b); ` `} ` ` `  `// Returns first number whose factorial ` `// divides x. ` `int` `firstFactorialDivisibleNumber(``int` `x) ` `{ ` `    ``int` `i = 1; ``// Result ` `    ``int` `new_x = x; ` ` `  `    ``for` `(i = 1; i < x; i++) { ` `        ``// Remove common factors ` `        ``new_x /= gcd(i, new_x); ` ` `  `        ``// We found first i. ` `        ``if` `(new_x == 1) ` `            ``break``; ` `    ``} ` `    ``return` `i; ` `} ` ` `  `// Driver code ` `int` `main(``void``) ` `{ ` `    ``int` `x = 16; ` `    ``cout << firstFactorialDivisibleNumber(x); ` `    ``return` `0; ` `} `

## Java

 `// Efficient Java program to find first ` `// natural number whose factorial divides x. ` `class` `GFG { ` ` `  `    ``// GCD function to compute the greatest ` `    ``// divisor among a and b ` `    ``static` `int` `gcd(``int` `a, ``int` `b) ` `    ``{ ` `        ``if` `((a % b) == ``0``) ` `            ``return` `b; ` `        ``return` `gcd(b, a % b); ` `    ``} ` ` `  `    ``// Returns first number whose factorial ` `    ``// divides x. ` `    ``static` `int` `firstFactorialDivisibleNumber(``int` `x) ` `    ``{ ` `        ``int` `i = ``1``; ``// Result ` `        ``int` `new_x = x; ` ` `  `        ``for` `(i = ``1``; i < x; i++) { ` ` `  `            ``// Remove common factors ` `            ``new_x /= gcd(i, new_x); ` ` `  `            ``// We found first i. ` `            ``if` `(new_x == ``1``) ` `                ``break``; ` `        ``} ` `        ``return` `i; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `x = ``16``; ` `        ``System.out.print(firstFactorialDivisibleNumber(x)); ` `    ``} ` `} ` `// This code is contributed by Anant Agarwal. `

## Python3

 `     `  `#  Python3 program to find first natural number ` `#  whose factorial divides x. ` ` `  `  `  `#  GCD function to compute the greatest ` `#  divisor among a and b ` `def` `gcd(a,  b): ` `    ``if` `((a ``%` `b) ``=``=` `0``): ` `        ``return` `b ` `    ``return` `gcd(b, a ``%` `b) ` ` `  `  `  `#  Returns first number whose factorial ` `#  divides x. ` `def` `firstFactorialDivisibleNumber(x): ` `    ``i ``=` `1` `#  Result ` `    ``new_x ``=` `x ` `  `  `    ``for` `i ``in` `range``(``1``,x): ` `        ``#  Remove common factors ` `        ``new_x ``/``=` `gcd(i, new_x) ` `  `  `        ``#  We found first i. ` `        ``if` `(new_x ``=``=` `1``): ` `            ``break` `    ``return` `i ` `  `  `#  Driver code ` `def` `main(): ` `    ``x ``=` `16` `    ``print``(firstFactorialDivisibleNumber(x)) ` ` `  `if` `__name__ ``=``=` `'__main__'``: ` `    ``main() ` ` `  `# This code is contributed by 29AjayKumar  `

## C#

 `// Efficient C# program to find first ` `// natural number whose factorial  ` `// divides x. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// GCD function to compute the ` `    ``// greatest divisor among a ` `    ``// and b ` `    ``static` `int` `gcd(``int` `a, ``int` `b) ` `    ``{ ` `        ``if` `((a % b) == 0) ` `            ``return` `b; ` `        ``return` `gcd(b, a % b); ` `    ``} ` ` `  `    ``// Returns first number whose ` `    ``// factorial divides x. ` `    ``static` `int` `firstFactorialDivisibleNumber( ` `                                        ``int` `x) ` `    ``{ ` `        ``int` `i = 1; ``// Result ` `        ``int` `new_x = x; ` ` `  `        ``for` `(i = 1; i < x; i++) { ` ` `  `            ``// Remove common factors ` `            ``new_x /= gcd(i, new_x); ` ` `  `            ``// We found first i. ` `            ``if` `(new_x == 1) ` `                ``break``; ` `        ``} ` `         `  `        ``return` `i; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `x = 16; ` `        ``Console.Write( ` `            ``firstFactorialDivisibleNumber(x)); ` `    ``} ` `} ` ` `  `// This code is contributed by nitin mittal. `

## PHP

 ` `

Output :

`6`

Another approach using boost library:
(Thanking ajay0007 for contributing this approach)
Here we use boost library to efficiently calculate the value of factorial.
Prerequisite :boost-multiprecision-library

## C++

 `// A cpp program for finding  ` `// the Special Factorial Number ` `#include ` `#include ` ` `  `using` `boost::multiprecision::cpp_int; ` `using` `namespace` `std; ` ` `  `// function for calculating factoial ` `cpp_int fact(``int` `n) ` `{ ` `    ``cpp_int num = 1; ` `     `  `    ``for` `(``int` `i = 1; i <= n; i++) ` `        ``num = num * i; ` `     `  `    ``return` `num; ` `} ` ` `  `// function for check Special_Factorial_Number ` `int` `Special_Factorial_Number(``int` `k) ` `{ ` `     `  `    ``for``(``int` `i = 1 ; i <= k ; i++ ) ` `    ``{  ` `        ``// call fact function and the  ` `        ``// Modulo with k and check ` `        ``// if condition is TRUE then return i ` `        ``if` `( ( fact (i) % k ) == 0 ) ` `        ``{ ` `            ``return` `i; ` `        ``} ` `    ``} ` `} ` ` `  `//driver function ` `int` `main() ` `{ ` `    ``// taking input ` `    ``int` `k = 16; ` `     `  `    ``cout<

## Java

 `// Java program for finding  ` `// the Special Factorial Number  ` `public` `class` `GFG { ` ` `  `// function for calculating factoial  ` `    ``static` `int` `fact(``int` `n) { ` `        ``int` `num = ``1``; ` ` `  `        ``for` `(``int` `i = ``1``; i <= n; i++) { ` `            ``num = num * i; ` `        ``} ` ` `  `        ``return` `num; ` `    ``} ` ` `  `// function for check Special_Factorial_Number  ` `    ``static` `int` `Special_Factorial_Number(``int` `k) { ` ` `  `        ``for` `(``int` `i = ``1``; i <= k; i++) { ` `            ``// call fact function and the  ` `            ``// Modulo with k and check  ` `            ``// if condition is TRUE then return i  ` `            ``if` `(fact(i) % k == ``0``) { ` `                ``return` `i; ` `            ``} ` `        ``} ` `        ``return` `0``; ` `    ``} ` ` `  `//driver function  ` `    ``public` `static` `void` `main(String[] args) { ` `        ``// taking input  ` `        ``int` `k = ``16``; ` `        ``System.out.println(Special_Factorial_Number(k)); ` ` `  `    ``} ` `} ` ` `  `/*This code is contributed by Rajput-Ji*/`

## Python3

 `# Python 3 program for finding  ` `# the Special Factorial Number  ` ` `  `# function for calculating factoial  ` `def` `fact( n): ` `    ``num ``=` `1` `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `        ``num ``=` `num ``*` `i ` `    ``return` `num ` ` `  `# function for check Special_Factorial_Number  ` `def` `Special_Factorial_Number(k): ` `     `  `    ``for` `i ``in` `range``(``1``, k ``+` `1``): ` `         `  `        ``# call fact function and the  ` `        ``# Modulo with k and check  ` `        ``# if condition is TRUE then return i  ` `        ``if` `(fact(i) ``%` `k ``=``=` `0``): ` `            ``return` `i ` `    ``return` `0` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `     `  `    ``# taking input  ` `    ``k ``=` `16` `    ``print``(Special_Factorial_Number(k)) ` ` `  `# This code is contributed by Rajput-Ji `

## C#

 `// C# program for finding  ` `// the Special Factorial Number  ` `using` `System;  ` `public` `class` `GFG{ ` ` `  ` `  `// function for calculating factoial  ` `    ``static` `int` `fact(``int` `n) {  ` `        ``int` `num = 1;  ` ` `  `        ``for` `(``int` `i = 1; i <= n; i++) {  ` `            ``num = num * i;  ` `        ``}  ` ` `  `        ``return` `num;  ` `    ``}  ` ` `  `// function for check Special_Factorial_Number  ` `    ``static` `int` `Special_Factorial_Number(``int` `k) {  ` ` `  `        ``for` `(``int` `i = 1; i <= k; i++) {  ` `            ``// call fact function and the  ` `            ``// Modulo with k and check  ` `            ``// if condition is TRUE then return i  ` `            ``if` `(fact(i) % k == 0) {  ` `                ``return` `i;  ` `            ``}  ` `        ``}  ` `        ``return` `0;  ` `    ``}  ` ` `  `//driver function  ` `    ``public` `static` `void` `Main() {  ` `        ``// taking input  ` `        ``int` `k = 16;  ` `        ``Console.WriteLine(Special_Factorial_Number(k));  ` ` `  `    ``}  ` `}  ` ` `  `// This code is contributed by 29AjayKumar `

## PHP

 ` `

Output :

```6
```

This article is contributed by Shubham Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.