Find all possible ways to Split the given string into Primes

Given a string str that represents a number. The task is to find all possible ways to split the given string such that each segment is a prime number in the range of 1 to 106.
Examples:

Input: str = “3175” 
Output: 
[317, 5] 
[31, 7, 5] 
[3, 17, 5]
Explanation: 
There can be 8 possible ways to split: 
[3175] 
[317, 5] – All primes 
[31, 75] 
[31, 7, 5] – All primes 
[3, 175] 
[3, 17, 5] – All primes 
[3, 1, 75] 
[3, 1, 7, 5]

Input: str = “11373” 
Output: 
[113, 73] 
[113, 7, 3] 
[11, 373] 
[11, 37, 3] 
[11, 3, 73] 
[11, 3, 7, 3]

Approach:

  1. The idea is to generate all possible splits of a string of size N by counting binary number from 0 to 2(N – 1) – 1. Where every 1 indicates that the string should split at that point.
    For example: 
     S = "3175"
     0 0 0   3175
     0 0 1   317, 5
     0 1 0   31, 75
     0 1 1   31, 7, 5
     1 0 0   3, 175
     1 0 1   3, 17, 5
     1 1 0   3, 1, 75
     1 1 1   3, 1, 7, 5
    
    
  2. To check the prime number efficiently we will pre-process prime number in a boolean array using Sieve of Eratosthenes.

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to Find all the 
// ways to split the given string
// into Primes.
#include<bits/stdc++.h>
using namespace std;
  
bool primes[1000000];
const int maxn = 1000000;
  
// Sieve of Eratosthenes
void sieve()
{
    memset(primes,true,sizeof(primes));
    primes[0] = primes[1] = 0;
      
    for(int i = 2; i * i <= maxn; i++)
    {
        if(primes[i])
        {
            for(int j = i * i ;
                   j <= maxn ; j += i)
            primes[j] = false;
        }
    }
}
  
// Function Convert integer
// to binary string
string toBinary(int n)
{
    string r = "";
    while(n != 0) 
    {
        r = (n % 2 == 0 ?"0":"1") + r;
        n /= 2;
    }
    return (r == "")?"0":r;
}
  
// Function print all the all the 
// ways to split the given string
// into Primes.
void PrimeSplit(string str)
{
    string temp;
    int cnt=0;
      
    // To store all possible strings
    vector<string> ans;
    int bt = 1<<(str.size()-1);
    int n = str.size();
  
  
    // Exponetnital complexity n*(2^(n-1))
    // for bit 
    for(int i = 0 ; i < bt ; i++)
    {
        temp = toBinary(i) + "0";
        int j = 0, x = n - temp.size(), y;
        while(j < x)
        {
            temp = "0" + temp;
            j++;
        }
        j = 0; 
        x = 0;
        y = -1;
          
        string sp = "", tp = "";
        bool flag = 0;
          
        while(j < n)
        {
            sp += str[j];
            if(temp[j] == '1')
            {
                tp += sp + ',';
                y = stoi(sp);
                  
                // Pruning step
                if(!primes[y])
                {
                    flag = 1;
                    break;
                }
                sp = "";
            }
            j++;
        }
        tp += sp;
        if(sp != "")
        {
            y = stoi(sp);
            if(!primes[y])
            flag = 1;
        }
        if(!flag)
        ans.push_back(tp);
    }
    if(ans.size() == 0)
    {
        cout << -1 << endl;
    }
    for(auto i:ans)
    {
        cout << i << endl;
    }
}
  
// Driver code
int main()
{
    string str = "11373";
    sieve();
      
    PrimeSplit(str);
      
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to Find all the  
// ways to split the given string 
// into Primes. 
import java.util.*;
import java.lang.*;
  
class GFG{
  
static boolean[] primes = new boolean[1000001];
static int maxn = 1000000;
  
// Sieve of Eratosthenes
static void sieve()
{
    Arrays.fill(primes, true);
    primes[0] = false;
    primes[1] = false;
      
    for(int i = 2; i * i <= maxn; i++)
    {
        if (primes[i])
        {
            for(int j = i * i;
                    j <= maxn; j += i)
                primes[j] = false;
        }
    }
}
  
// Function Convert integer
// to binary string
static String toBinary(int n)
{
    String r = "";
      
    while(n != 0
    {
        r = (n % 2 == 0 ? "0" : "1") + r;
        n /= 2;
    }
    return (r == "") ? "0" : r;
}
  
// Function print all the all the 
// ways to split the given string
// into Primes.
static void PrimeSplit(String str)
{
    String temp;
    int cnt = 0;
      
    // To store all possible strings
    ArrayList<String> ans = new ArrayList<>();
    int bt = 1 << (str.length() - 1);
    int n = str.length();
  
    // Exponetnital complexity n*(2^(n-1))
    // for bit 
    for(int i = 0; i < bt; i++)
    {
        temp = toBinary(i) + "0";
        int j = 0, x = n - temp.length(), y;
          
        while(j < x)
        {
            temp = "0" + temp;
            j++;
        }
        j = 0
        x = 0;
        y = -1;
          
        String sp = "", tp = "";
        boolean flag = false;
          
        while(j < n)
        {
            sp += str.charAt(j);
              
            if (temp.charAt(j) == '1')
            {
                tp += sp + ',';
                y = Integer.parseInt(sp);
                  
                // Pruning step 
                if (!primes[y])
                {
                    flag = true;
                    break;
                }
                sp = "";
            }
            j++;
        }
        tp += sp;
          
        if (sp != "")
        {
            y = Integer.parseInt(sp);
              
            if (!primes[y])
                flag = true;
        }
        if (!flag)
        ans.add(tp);
    }
      
    if (ans.size() == 0)
    {
        System.out.println(-1);
    }
      
    for(String i : ans)
    {
        System.out.println(i);
    }
}
  
// Driver Code
public static void main (String[] args)
{
    String str = "11373";
    sieve();
      
    PrimeSplit(str);
}
}
  
// This code is contributed by offbeat

chevron_right


Output: 

113,73
113,7,3
11,373
11,37,3
11,3,73
11,3,7,3

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : offbeat