# Find all possible ways to Split the given string into Primes

Given a string str that represents a number. The task is to find all possible ways to split the given string such that each segment is a prime number in the range of 1 to 106.
Examples:

Input: str = “3175”
Output:
[317, 5]
[31, 7, 5]
[3, 17, 5]
Explanation:
There can be 8 possible ways to split:

[317, 5] – All primes
[31, 75]
[31, 7, 5] – All primes
[3, 175]
[3, 17, 5] – All primes
[3, 1, 75]
[3, 1, 7, 5]

Input: str = “11373”
Output:
[113, 73]
[113, 7, 3]
[11, 373]
[11, 37, 3]
[11, 3, 73]
[11, 3, 7, 3]

Approach:

1. The idea is to generate all possible splits of a string of size N by counting binary number from 0 to 2(N – 1) – 1. Where every 1 indicates that the string should split at that point.
For example:
``` S = "3175"
0 0 0   3175
0 0 1   317, 5
0 1 0   31, 75
0 1 1   31, 7, 5
1 0 0   3, 175
1 0 1   3, 17, 5
1 1 0   3, 1, 75
1 1 1   3, 1, 7, 5

```
2. To check the prime number efficiently we will pre-process prime number in a boolean array using Sieve of Eratosthenes.

Below is the implementation of the above approach.

## C++

 `// C++ program to Find all the  ` `// ways to split the given string ` `// into Primes. ` `#include ` `using` `namespace` `std; ` ` `  `bool` `primes; ` `const` `int` `maxn = 1000000; ` ` `  `// Sieve of Eratosthenes ` `void` `sieve() ` `{ ` `    ``memset``(primes,``true``,``sizeof``(primes)); ` `    ``primes = primes = 0; ` `     `  `    ``for``(``int` `i = 2; i * i <= maxn; i++) ` `    ``{ ` `        ``if``(primes[i]) ` `        ``{ ` `            ``for``(``int` `j = i * i ; ` `                   ``j <= maxn ; j += i) ` `            ``primes[j] = ``false``; ` `        ``} ` `    ``} ` `} ` ` `  `// Function Convert integer ` `// to binary string ` `string toBinary(``int` `n) ` `{ ` `    ``string r = ``""``; ` `    ``while``(n != 0)  ` `    ``{ ` `        ``r = (n % 2 == 0 ?``"0"``:``"1"``) + r; ` `        ``n /= 2; ` `    ``} ` `    ``return` `(r == ``""``)?``"0"``:r; ` `} ` ` `  `// Function print all the all the  ` `// ways to split the given string ` `// into Primes. ` `void` `PrimeSplit(string str) ` `{ ` `    ``string temp; ` `    ``int` `cnt=0; ` `     `  `    ``// To store all possible strings ` `    ``vector ans; ` `    ``int` `bt = 1<<(str.size()-1); ` `    ``int` `n = str.size(); ` ` `  ` `  `    ``// Exponetnital complexity n*(2^(n-1)) ` `    ``// for bit  ` `    ``for``(``int` `i = 0 ; i < bt ; i++) ` `    ``{ ` `        ``temp = toBinary(i) + ``"0"``; ` `        ``int` `j = 0, x = n - temp.size(), y; ` `        ``while``(j < x) ` `        ``{ ` `            ``temp = ``"0"` `+ temp; ` `            ``j++; ` `        ``} ` `        ``j = 0;  ` `        ``x = 0; ` `        ``y = -1; ` `         `  `        ``string sp = ``""``, tp = ``""``; ` `        ``bool` `flag = 0; ` `         `  `        ``while``(j < n) ` `        ``{ ` `            ``sp += str[j]; ` `            ``if``(temp[j] == ``'1'``) ` `            ``{ ` `                ``tp += sp + ``','``; ` `                ``y = stoi(sp); ` `                 `  `                ``// Pruning step ` `                ``if``(!primes[y]) ` `                ``{ ` `                    ``flag = 1; ` `                    ``break``; ` `                ``} ` `                ``sp = ``""``; ` `            ``} ` `            ``j++; ` `        ``} ` `        ``tp += sp; ` `        ``if``(sp != ``""``) ` `        ``{ ` `            ``y = stoi(sp); ` `            ``if``(!primes[y]) ` `            ``flag = 1; ` `        ``} ` `        ``if``(!flag) ` `        ``ans.push_back(tp); ` `    ``} ` `    ``if``(ans.size() == 0) ` `    ``{ ` `        ``cout << -1 << endl; ` `    ``} ` `    ``for``(``auto` `i:ans) ` `    ``{ ` `        ``cout << i << endl; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``string str = ``"11373"``; ` `    ``sieve(); ` `     `  `    ``PrimeSplit(str); ` `     `  `    ``return` `0; ` `} `

## Java

 `// Java program to Find all the   ` `// ways to split the given string  ` `// into Primes.  ` `import` `java.util.*; ` `import` `java.lang.*; ` ` `  `class` `GFG{ ` ` `  `static` `boolean``[] primes = ``new` `boolean``[``1000001``]; ` `static` `int` `maxn = ``1000000``; ` ` `  `// Sieve of Eratosthenes ` `static` `void` `sieve() ` `{ ` `    ``Arrays.fill(primes, ``true``); ` `    ``primes[``0``] = ``false``; ` `    ``primes[``1``] = ``false``; ` `     `  `    ``for``(``int` `i = ``2``; i * i <= maxn; i++) ` `    ``{ ` `        ``if` `(primes[i]) ` `        ``{ ` `            ``for``(``int` `j = i * i; ` `                    ``j <= maxn; j += i) ` `                ``primes[j] = ``false``; ` `        ``} ` `    ``} ` `} ` ` `  `// Function Convert integer ` `// to binary string ` `static` `String toBinary(``int` `n) ` `{ ` `    ``String r = ``""``; ` `     `  `    ``while``(n != ``0``)  ` `    ``{ ` `        ``r = (n % ``2` `== ``0` `? ``"0"` `: ``"1"``) + r; ` `        ``n /= ``2``; ` `    ``} ` `    ``return` `(r == ``""``) ? ``"0"` `: r; ` `} ` ` `  `// Function print all the all the  ` `// ways to split the given string ` `// into Primes. ` `static` `void` `PrimeSplit(String str) ` `{ ` `    ``String temp; ` `    ``int` `cnt = ``0``; ` `     `  `    ``// To store all possible strings ` `    ``ArrayList ans = ``new` `ArrayList<>(); ` `    ``int` `bt = ``1` `<< (str.length() - ``1``); ` `    ``int` `n = str.length(); ` ` `  `    ``// Exponetnital complexity n*(2^(n-1)) ` `    ``// for bit  ` `    ``for``(``int` `i = ``0``; i < bt; i++) ` `    ``{ ` `        ``temp = toBinary(i) + ``"0"``; ` `        ``int` `j = ``0``, x = n - temp.length(), y; ` `         `  `        ``while``(j < x) ` `        ``{ ` `            ``temp = ``"0"` `+ temp; ` `            ``j++; ` `        ``} ` `        ``j = ``0``;  ` `        ``x = ``0``; ` `        ``y = -``1``; ` `         `  `        ``String sp = ``""``, tp = ``""``; ` `        ``boolean` `flag = ``false``; ` `         `  `        ``while``(j < n) ` `        ``{ ` `            ``sp += str.charAt(j); ` `             `  `            ``if` `(temp.charAt(j) == ``'1'``) ` `            ``{ ` `                ``tp += sp + ``','``; ` `                ``y = Integer.parseInt(sp); ` `                 `  `                ``// Pruning step  ` `                ``if` `(!primes[y]) ` `                ``{ ` `                    ``flag = ``true``; ` `                    ``break``; ` `                ``} ` `                ``sp = ``""``; ` `            ``} ` `            ``j++; ` `        ``} ` `        ``tp += sp; ` `         `  `        ``if` `(sp != ``""``) ` `        ``{ ` `            ``y = Integer.parseInt(sp); ` `             `  `            ``if` `(!primes[y]) ` `                ``flag = ``true``; ` `        ``} ` `        ``if` `(!flag) ` `        ``ans.add(tp); ` `    ``} ` `     `  `    ``if` `(ans.size() == ``0``) ` `    ``{ ` `        ``System.out.println(-``1``); ` `    ``} ` `     `  `    ``for``(String i : ans) ` `    ``{ ` `        ``System.out.println(i); ` `    ``} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``String str = ``"11373"``; ` `    ``sieve(); ` `     `  `    ``PrimeSplit(str); ` `} ` `} ` ` `  `// This code is contributed by offbeat`

Output:

```113,73
113,7,3
11,373
11,37,3
11,3,73
11,3,7,3
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : offbeat

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.