Find a positive number M such that gcd(N^M, N&M) is maximum

Given a number N, the task is to find a positive number M such that gcd(N^M, N&M) is the maximum possible and M < N. The task is to print the maximum gcd thus obtained.

Examples:

Input: N = 5 
Output: 7 
gcd(2^5, 2&5) = 7 

Input: N = 15 
Output: 5 


Approach: There are two cases which need to be solved to get the maximum gcd possible.

  • If a minimum of one bit is not set in the number, then M will be a number whose bits are flipped at every position of N. And after that get the maximum gcd.
  • If all bits are set, then the answer will the maximum factor of that number except the number itself.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Recursive function to count
// the number of unset bits
int countBits(int n)
{
    // Base case
    if (n == 0)
        return 0;
  
    // unset bit count
    else
        return !(n & 1) + countBits(n >> 1);
}
  
// Function to return the max gcd
int maxGcd(int n)
{
  
    // If no unset bits
    if (countBits(n) == 0) {
        // Find the maximum factor
        for (int i = 2; i * i <= n; i++) {
            // Highest factor
            if (n % i == 0) {
                return n / i;
            }
        }
    }
    else {
  
        int val = 0;
        int power = 1;
        int dupn = n;
  
        // Find the flipped bit number
        while (n) {
            // If bit is not set
            if (!(n & 1)) {
                val += power;
            }
  
            // Next power of 2
            power = power * 2;
  
            // Right shift the number
            n = n >> 1;
        }
  
        // Return the answer
        return __gcd(val ^ dupn, val & dupn);
    }
  
    // If a prime number
    return 1;
}
  
// Driver Code
int main()
{
    // First example
    int n = 5;
    cout << maxGcd(n) << endl;
  
    // Second example
    n = 15;
    cout << maxGcd(n) << endl;
  
    return 0;
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to implement above approach 
  
// Recursive function to count 
// the number of unset bits 
function countBits($n
{
    // Base case 
    if ($n == 0) 
        return 0; 
  
    // unset bit count 
    else
        return !($n & 1) + 
                 countBits($n >> 1); 
  
// Recursive function to return
// gcd of a and b 
function gcd($a, $b
  
    // Everything divides 0 
    if ($a == 0) 
        return $b
    if ($b == 0) 
        return $a
  
    // base case 
    if($a == $b
        return $a
      
    // a is greater 
    if($a > $b
        return gcd($a - $b , $b ); 
  
    return gcd($a , $b - $a ); 
  
// Function to return the max gcd 
function maxGcd($n
  
    // If no unset bits 
    if (countBits($n) == 0) 
    
          
        // Find the maximum factor 
        for ($i = 2; $i * $i <= $n; $i++) 
        
              
            // Highest factor 
            if ($n % $i == 0) 
            
                return floor($n / $i); 
            
        
    
    else 
    
        $val = 0; 
        $power = 1; 
        $dupn = $n
  
        // Find the flipped bit number 
        while ($n
        
              
            // If bit is not set 
            if (!($n & 1))
            
                $val += $power
            
  
            // Next power of 2 
            $power = $power * 2; 
  
            // Right shift the number 
            $n = $n >> 1; 
        
  
        // Return the answer 
        return gcd($val ^ $dupn, $val & $dupn); 
    
  
    // If a prime number 
    return 1; 
  
// Driver Code 
  
// First example 
$n = 5; 
echo maxGcd($n), "\n"
  
// Second example 
$n = 15; 
echo maxGcd($n), "\n"
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

7
5


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Ryuga