Find 2^(2^A) % B

Given two integers A and B, the task is to calculate 22A % B.

Examples:

Input: A = 3, B = 5
Output: 1
223 % 5 = 28 % 5 = 256 % 5 = 1.

Input: A = 10, B = 13
Output: 3



Approach: The problem can be efficiently solved by breaking it into sub-problems without overflow of integer by using recursion.

Let F(A, B) = 22A % B.
Now, F(A, B) = 22A % B
= 22 * 2A – 1 % B
= (22A – 1 + 2A – 1) % B
= (22A – 1 * 22A – 1) % B
= (F(A – 1, B) * F(A – 1, B)) % B
Therefore, F(A, B) = (F(A – 1, B) * F(A – 1, B)) % B.
The base case is F(1, B) = 221 % B = 4 % B.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define ll long long
  
// Function to return 2^(2^A) % B
ll F(ll A, ll B)
{
  
    // Base case, 2^(2^1) % B = 4 % B
    if (A == 1)
        return (4 % B);
    else
    {
        ll temp =  F(A - 1, B);
        return (temp * temp) % B;
    }
}
  
// Driver code
int main()
{
    ll A = 25, B = 50;
  
    // Print 2^(2^A) % B
    cout << F(A, B);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach 
class GFG 
    // Function to return 2^(2^A) % B 
    static long F(long A, long B) 
    
      
        // Base case, 2^(2^1) % B = 4 % B 
        if (A == 1
            return (4 % B); 
        else
        
            long temp = F(A - 1, B); 
            return (temp * temp) % B; 
        
    
      
    // Driver code 
    public static void main(String args[]) 
    
        long A = 25, B = 50
      
        // Print 2^(2^A) % B 
        System.out.println(F(A, B)); 
    
  
// This code is contributed by Ryuga 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to return 2^(2^A) % B
def F(A, B):
  
    # Base case, 2^(2^1) % B = 4 % B
    if (A == 1):
        return (4 % B);
    else:
        temp = F(A - 1, B);
        return (temp * temp) % B;
  
# Driver code
A = 25;
B = 50;
  
# Print 2^(2^A) % B
print(F(A, B));
  
# This code is contributed by mits

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
class GFG
{
      
// Function to return 2^(2^A) % B
static long F(long A, long B)
{
  
    // Base case, 2^(2^1) % B = 4 % B
    if (A == 1)
        return (4 % B);
    else
    {
        long temp = F(A - 1, B);
        return (temp * temp) % B;
    }
}
  
// Driver code
static void Main()
{
    long A = 25, B = 50;
  
    // Print 2^(2^A) % B
    System.Console.WriteLine(F(A, B));
}
}
  
// This code is contributed by mits

chevron_right


PHP

Output:

46


My Personal Notes arrow_drop_up

Coder Machine Learner Social Activist Vocalist

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Mithun Kumar, Ryuga, Rajput-Ji