Final state of the string after modification

Given a string S of length n representing n boxes adjacent to each other.

  1. A character R at index i represents that i-th box is being pushed towards the right.
  2. On the other hand, L at index i represents that i-th box is being pushed towards the left.
  3. And a . represents an empty space.

We start with initial configuration, at every time unit, a box being pushed toward right pushes next box toward right and same is true for a box being pushed toward left. The task is to print the final positions of all boxes when no more movements are possible. If there is a substring “R.L”, then middle box is being pushed from both directions and therefore not moved any more.


Input: S = “RR.L”
Output: RR.L
The first and second boxes are being toward right. The middle dot is being pushed from both directions, so does not move.

Input: S = “R..R…L.”
Output: RRRRR.LL.
At time unit 1 :
The first box pushes second box.
Third box pushes fourth box.
Second last box pushes third last box, configuration becomes
At time unit 2 :
Second box pushes third box, string becomes

Approach: We can calculate the net force applied on every box. The forces we care about are how close a box is to a leftward R or to a rightward L i.e. the more closer we are, the stronger will be the force.

  • Scanning from left to right, force decays by 1 in every iteration, and resets to N if we meet an R again.
  • Similarly, from right to left direction, we can find the forces from the right (closeness to L).
  • For some box result[i], if the forces are equal then the result is . as both side apply same force to it. Otherwise, our result is implied by whichever force is stronger.

For string S = “R..R…L.”
The forces going from left to right are [7, 6, 5, 7, 6, 5, 4, 0, 0].
The forces going from right to left are [0, 0, 0, 0, -4, -5, -6, -7, 0].
Combining them (taking their arithmetic addition at each index) gives result = [7, 6, 5, 7, 2, 0, -2, -7, 0].
Thus, the final answer is RRRRR.LL.

Below is the implementation of above approach:






# Python3 implementation of above approach
# Function to return final 
# positions of the boxes
def pushBoxes(S):
    N = len(S)
    force = [0] * N
    # Populate forces going from left to right
    f = 0
    for i in range(0, N):
        if S[i] == 'R':
            f = N
        elif S[i] == 'L':
            f = 0
            f = max(f - 1, 0)
        force[i] += f
    # Populate forces going from right to left
    f = 0
    for i in range(N - 1, -1, -1):
        if S[i] == 'L':
            f = N
        elif S[i] == 'R':
            f = 0
            f = max(f - 1, 0)
        force[i] -= f
    # return final state of boxes
    return "".join('.' if f == 0 else 'R' if f > 0 else 'L'
                   for f in force)
# Driver code
S = ".L.R...LR..L.."
# Function call to print answer




Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Recommended Posts:

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using or mail your article to See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.