Factorial of an Array of integers
Given an array with positive integers. The task is to find the factorial of all the array elements.
Note: As the numbers would be very large, print them by taking modulus with 109+7.
Examples:
Input: arr[] = {3, 10, 200, 20, 12} Output: 6 3628800 722479105 146326063 479001600 Input: arr[] = {5, 7, 10} Output: 120 5040 3628800
Naive approach: We know that there is a simple approach to calculate the factorial of a number. We can run a loop for all array values and can find the factorial of every number using the above approach.
Time Complexity would be O(N2)
Space Complexity would be O(1)
Efficient Approach: We know that the factorial of a number:
N! = N*(N-1)*(N-2)*(N-3)*****3*2*1
The recursive formulae to calculate the factorial of a number is:
fact(N) = N*fact(N-1).
Hence, we will build an array in a bottom-up manner using the above recursion. Once we have stored the values in the array then we can answer the queries in O(1) time. Hence, the overall time complexity would be O(N). We can use this method only if the array values are less than 10^6. Otherwise, we would not be able to store them in an array.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int MOD = 1000000007 ; int SIZE = 10000; // vector to store the factorial values // max_element(arr) should be less than SIZE vector< long > fact; // Function to calculate the factorial // using dynamic programming void factorial() { int i; fact.push_back(( long )1); for (i = 1; i <= SIZE; i++) { // Calculation of factorial // As fact[i-1] stores the factorial of n-1 // so factorial of n is fact[i] = (fact[i-1]*i) fact.push_back((fact[i - 1] * i) % MOD); } } // Function to print factorial of every element // of the array void PrintFactorial( int arr[], int n) { for ( int i = 0; i < n; i += 1) { // Printing the stored value of arr[i]! cout << fact[arr[i]] << " " ; } } int main() { int arr[] = {3, 10, 200, 20, 12}; int n = sizeof (arr) / sizeof (arr[0]); // Function to store factorial values mod 10**9+7 factorial(); // Function to print the factorial values mod 10**9+7 PrintFactorial(arr,n); return 0; } // This code is contributed by decode2207. |
Java
<script> // Java implementation of the approach import java.util.*; class Sol { static int MOD = 1000000007 ; static int SIZE = 10000 ; // vector to store the factorial values // max_element(arr) should be less than SIZE static Vector<Long> fact = new Vector<Long>(); // Function to calculate the factorial // using dynamic programming static void factorial() { int i; fact.add(( long ) 1 ); for (i = 1 ; i <= SIZE; i++) { // Calculation of factorial // As fact[i-1] stores the factorial of n-1 // so factorial of n is fact[i] = (fact[i-1]*i) fact.add((fact.get(i - 1 ) * i) % MOD); } } // Function to print factorial of every element // of the array static void PrintFactorial( int arr[], int n) { for ( int i = 0 ; i < n; i += 1 ) { // Printing the stored value of arr[i]! System.out.print(fact.get(arr[i])+ " " ); } } // Driver code public static void main(String args[]) { int arr[] = { 3 , 10 , 200 , 20 , 12 }; int n = arr.length; // Function to store factorial values mod 10**9+7 factorial(); // Function to print the factorial values mod 10**9+7 PrintFactorial(arr,n); } } // This code is contributed by Arnab Kundu </script> |
Python3
# Python implementation of the above Approach mod = 1000000007 SIZE = 10000 # declaring list initially and making # it 1 i.e for every index fact = [ 1 ] * SIZE # Calculation of factorial using Dynamic programming def factorial(): for i in range ( 1 , SIZE): # Calculation of factorial # As fact[i-1] stores the factorial of n-1 # so factorial of n is fact[i] = (fact[i-1]*i) fact[i] = (fact[i - 1 ] * i) % mod # function call factorial() # Driver code arr = [ 3 , 10 , 200 , 20 , 12 ] for i in arr: print (fact[i]) |
PHP
<?php // PHP implementation of the approach $MOD = 1000000007 ; $SIZE = 10000 ; // Function to calculate the factorial // using dynamic programming function factorial( $fact ) { $fact [0] = 1; for ( $i = 1; $i <= $GLOBALS [ 'SIZE' ]; $i ++) { // Calculation of factorial // As fact[i-1] stores the factorial of n-1 // so factorial of n is fact[i] = (fact[i-1]*i) $fact [ $i ] = ( $fact [ $i - 1] * $i ) % $GLOBALS [ 'MOD' ]; } return $fact ; } // Function to print factorial of every element // of the array function PrintFactorial( $fact , $arr , $n ) { for ( $i = 0; $i < $n ; $i ++) { // Printing the stored value of arr[i]! echo $fact [ $arr [ $i ]], " " ; } } // Driver code // vector to store the factorial values // max_element(arr) should be less than SIZE $fact = array_fill (0, $SIZE + 1, 0); $arr = array (3, 10, 200, 20, 12); $n = count ( $arr ); // Function to store factorial values mod 10**9+7 $fact = factorial( $fact ); // Function to print the factorial values mod 10**9+7 PrintFactorial( $fact , $arr , $n ); // This code is contributed by AnkitRai01 ?> |
C#
// C# implementation of above approach using System.Collections.Generic; using System; class Sol { static int MOD = 1000000007 ; static int SIZE = 10000; // vector to store the factorial values // max_element(arr) should be less than SIZE static List< long > fact = new List< long >(); // Function to calculate the factorial // using dynamic programming static void factorial() { int i; fact.Add(( long )1); for (i = 1; i <= SIZE; i++) { // Calculation of factorial // As fact[i-1] stores the factorial of n-1 // so factorial of n is fact[i] = (fact[i-1]*i) fact.Add((fact[i - 1] * i) % MOD); } } // Function to print factorial of every element // of the array static void PrintFactorial( int []arr, int n) { for ( int i = 0; i < n; i += 1) { // Printing the stored value of arr[i]! Console.Write(fact[arr[i]]+ " " ); } } // Driver code public static void Main(String []args) { int []arr = {3, 10, 200, 20, 12}; int n = arr.Length; // Function to store factorial values mod 10**9+7 factorial(); // Function to print the factorial values mod 10**9+7 PrintFactorial(arr,n); } } // This code is contributed by 29AjayKumar |
Javascript
// Javascript implementation of the approach let MOD = 1000000007; let SIZE = 10000; // Function to calculate the factorial // using dynamic programming function factorial(fact) { fact[0] = 1; for (let i = 1; i <= SIZE; i++) { // Calculation of factorial // As fact[i-1] stores the factorial of n-1 // so factorial of n is fact[i] = (fact[i-1]*i) fact[i] = (fact[i - 1] * i) % MOD; } return fact; } // Function to print factorial of every element // of the array function PrintFactorial(fact, arr, n) { for (let i = 0; i < n; i++) { // Printing the stored value of arr[i]! document.write(fact[arr[i]] + " " ); } } // Driver code // vector to store the factorial values // max_element(arr) should be less than SIZE let fact = new Array(SIZE + 1).fill(0); let arr = new Array(3, 10, 200, 20, 12); let n = arr.length; // Function to store factorial values mod 10**9+7 fact = factorial(fact); // Function to print the factorial values mod 10**9+7 PrintFactorial(fact,arr,n); // This code is contributed by gfgking |
6 3628800 722479105 146326063 479001600
Time Complexity : O(N)
Space Complexity : O(N)
Please Login to comment...