Given an array of size N. Let A and B be the minimum and maximum in the array respectively. Task is to find how many number should be added to the given array such that all the element in the range [A, B] occur at-least once in the array.
Examples:
Input : arr[] = {4, 5, 3, 8, 6} Output : 1 Only 7 to be added in the list. Input : arr[] = {2, 1, 3} Output : 0
Method 1 (Sorting)
1- Sort the array.
2- Compare arr[i] == arr[i+1]-1 or not. If not, update count = arr[i+1]-arr[i]-1.
3- Return count.
C++
// C++ program for above implementation #include <bits/stdc++.h> using namespace std; // Function to count numbers to be added int countNum( int arr[], int n) { int count = 0; // Sort the array sort(arr, arr + n); // Check if elements are consecutive // or not. If not, update count for ( int i = 0; i < n - 1; i++) if (arr[i] != arr[i+1] && arr[i] != arr[i + 1] - 1) count += arr[i + 1] - arr[i] - 1; return count; } // Drivers code int main() { int arr[] = { 3, 5, 8, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countNum(arr, n) << endl; return 0; } |
Java
// java program for above implementation import java.io.*; import java.util.*; public class GFG { // Function to count numbers to be added static int countNum( int []arr, int n) { int count = 0 ; // Sort the array Arrays.sort(arr); // Check if elements are consecutive // or not. If not, update count for ( int i = 0 ; i < n - 1 ; i++) if (arr[i] != arr[i+ 1 ] && arr[i] != arr[i + 1 ] - 1 ) count += arr[i + 1 ] - arr[i] - 1 ; return count; } // Drivers code static public void main (String[] args) { int []arr = { 3 , 5 , 8 , 6 }; int n = arr.length; System.out.println(countNum(arr, n)); } } // This code is contributed by vt_m. |
Python3
# python program for above implementation # Function to count numbers to be added def countNum(arr, n): count = 0 # Sort the array arr.sort() # Check if elements are consecutive # or not. If not, update count for i in range ( 0 , n - 1 ): if (arr[i] ! = arr[i + 1 ] and arr[i] ! = arr[i + 1 ] - 1 ): count + = arr[i + 1 ] - arr[i] - 1 ; return count # Drivers code arr = [ 3 , 5 , 8 , 6 ] n = len (arr) print (countNum(arr, n)) # This code is contributed by Sam007 |
C#
// C# program for above implementation using System; public class GFG { // Function to count numbers to be added static int countNum( int []arr, int n) { int count = 0; // Sort the array Array.Sort(arr); // Check if elements are consecutive // or not. If not, update count for ( int i = 0; i < n - 1; i++) if (arr[i] != arr[i+1] && arr[i] != arr[i + 1] - 1) count += arr[i + 1] - arr[i] - 1; return count; } // Drivers code static public void Main () { int []arr = { 3, 5, 8, 6 }; int n = arr.Length; Console.WriteLine(countNum(arr, n)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program for // above implementation // Function to count // numbers to be added function countNum( $arr , $n ) { $count = 0; // Sort the array sort( $arr ); // Check if elements are // consecutive or not. // If not, update count for ( $i = 0; $i < $n - 1; $i ++) if ( $arr [ $i ] != $arr [ $i + 1] && $arr [ $i ] != $arr [ $i + 1] - 1) $count += $arr [ $i + 1] - $arr [ $i ] - 1; return $count ; } // Driver code $arr = array (3, 5, 8, 6); $n = count ( $arr ); echo countNum( $arr , $n ) ; // This code is contributed // by anuj_67. ?> |
Output:
2
Time Complexity: O(n log n)
Method 2 (Use Hashing)
1- Maintain a hash of array elements.
2- Store minimum and maximum element.
3- Traverse from minimum to maximum element in hash
And count if element is not in hash.
4- Return count.
C++
// C++ program for above implementation #include <bits/stdc++.h> using namespace std; // Function to count numbers to be added int countNum( int arr[], int n) { unordered_set< int > s; int count = 0, maxm = INT_MIN, minm = INT_MAX; // Make a hash of elements // and store minimum and maximum element for ( int i = 0; i < n; i++) { s.insert(arr[i]); if (arr[i] < minm) minm = arr[i]; if (arr[i] > maxm) maxm = arr[i]; } // Traverse all elements from minimum // to maximum and count if it is not // in the hash for ( int i = minm; i <= maxm; i++) if (s.find(arr[i]) == s.end()) count++; return count; } // Drivers code int main() { int arr[] = { 3, 5, 8, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countNum(arr, n) << endl; return 0; } |
Java
// Java implementation of the approach import java.util.HashSet; class GFG { // Function to count numbers to be added static int countNum( int arr[], int n) { HashSet<Integer> s = new HashSet<>(); int count = 0 , maxm = Integer.MIN_VALUE, minm = Integer.MAX_VALUE; // Make a hash of elements // and store minimum and maximum element for ( int i = 0 ; i < n; i++) { s.add(arr[i]); if (arr[i] < minm) minm = arr[i]; if (arr[i] > maxm) maxm = arr[i]; } // Traverse all elements from minimum // to maximum and count if it is not // in the hash for ( int i = minm; i <= maxm; i++) if (!s.contains(i)) count++; return count; } // Drivers code public static void main(String[] args) { int arr[] = { 3 , 5 , 8 , 6 }; int n = arr.length; System.out.println(countNum(arr, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Function to count numbers to be added def countNum(arr, n): s = dict () count, maxm, minm = 0 , - 10 * * 9 , 10 * * 9 # Make a hash of elements and store # minimum and maximum element for i in range (n): s[arr[i]] = 1 if (arr[i] < minm): minm = arr[i] if (arr[i] > maxm): maxm = arr[i] # Traverse all elements from minimum # to maximum and count if it is not # in the hash for i in range (minm, maxm + 1 ): if i not in s.keys(): count + = 1 return count # Driver code arr = [ 3 , 5 , 8 , 6 ] n = len (arr) print (countNum(arr, n)) # This code is contributed by mohit kumar |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to count numbers to be added static int countNum( int []arr, int n) { HashSet< int > s = new HashSet< int >(); int count = 0, maxm = int .MinValue, minm = int .MaxValue; // Make a hash of elements // and store minimum and maximum element for ( int i = 0; i < n; i++) { s.Add(arr[i]); if (arr[i] < minm) minm = arr[i]; if (arr[i] > maxm) maxm = arr[i]; } // Traverse all elements from minimum // to maximum and count if it is not // in the hash for ( int i = minm; i <= maxm; i++) if (!s.Contains(i)) count++; return count; } // Drivers code public static void Main(String[] args) { int []arr = { 3, 5, 8, 6 }; int n = arr.Length; Console.WriteLine(countNum(arr, n)); } } // This code is contributed by Rajput-Ji |
Output:
2
Time Complexity- O(max – min + 1)
This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.